REGULAR LANGUAGES AND FINITE AUTOMATA (1)

Jie Jiang

October 12, 2009
Languages definition

- Σ^* denotes the set of all sequences of strings that are composed of zero or more symbols of Σ.
- A language is a subset of Σ^*.
- A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols.
 - Σ^*, \emptyset and Σ are languages.
 - $\{aba, czr, d, f\}$ is a language over $\{a, b, \ldots, z\}$.
- The infinite languages are specified by the scheme:

 $$L = \{ w \in \Sigma^* : w \text{ has property } P \}$$

 - $\{ w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's} \}$
 - $\{ w \in \Sigma^* : w = w^R \}$
Finite representation of languages

- How to represent languages by finite specifications? (A central issue in the theory of computation)
- Finite language: exhaustive enumeration of all the strings in the language.
 - \(\{aba, czr, d, f\} \) is a language over \(\{a, b, \ldots, z\} \).
- What about infinite languages?
 - \(\{w \in \{0, 1\}^* : w \text{ has an equal number of } 0\text{'s and } 1\text{'s}\} \)
 - \(\{w \in \Sigma^* : w = w^R\} \)
Finite representation of languages

- What’s ”finite representation of a language.”
 - any such representation must be a string, a finite sequence of symbols over some alphabet Σ
 - different languages should have different representations.

- Problems:
 - Only a countable number of representations
 - the set Σ^* of strings over an alphabet Σ is countably infinite
 - The union of a countably infinite collection of countably infinite sets is countably infinite.
 - An uncountable number of things to represent
 - the set of all possible languages over a given alphabet Σ is uncountably infinite.
 - power set of any countably infinite set is not countably infinite.
 - Find finite representations, of one sort or another, for at least some of the more interesting languages.
No matter how powerful are the methods we use for representing languages, only countably many languages can be represented, so long as the representations themselves are finite.

There being uncountably many languages in all, the vast majority of them will inevitably be missed under any finite representational scheme.

Several ways of describing and representing languages:
- in Chomsky hierarchy
 - all these finite representational methods are inevitably limited

Regular languages, regular grammars and finite automata
Example for expressions (strings of symbols) to describe how languages can be built up by using the operations described in the previous section.

$L = \{ w \in \{0, 1\}^* : w \text{ has two or three occurrences of 1, the first and second of which are not consecutive} \}$.

This language can be described using only singleton sets and the symbols \cup, \circ, and \ast as

\[
\{0\}^* \circ \{1\} \circ \{0\}^* \circ \{0\} \circ \{1\} \circ \{0\}^* \circ (\{1\} \circ \{0\}^*) \cup \emptyset^*\]

The only symbols used are the braces $\{\}$ and $\}$, the parentheses $(\text{ and }\), \emptyset, 0, 1, \ast, \circ$, and \cup.

dispense with the braces and \circ:

$L = 0^*10^*010^*(10^* \cup \emptyset^*)$
Regular expressions

- Roughly speaking, a regular expression describes a language exclusively by means of single symbols and \emptyset, combined perhaps with the symbols \cup and $*$, possibly with the aid of parentheses.

- **Definition**: regular expression
 - **Basis**: \emptyset, ϵ, and a are regular expressions for all $a \in \Sigma$.
 - **Induction**: If R and S are regular expressions, then the following expressions are also regular: (R), $R|S$, RS, and R^*.

- **Kleene star (or Kleene operator or Kleene closure)**: R^*

- **Kleene plus**: R^+

- **Note**: different from the notations above (for sets etc.), for example: replace \cup with $|$, ...
Regular expressions

- **Order of precedence:** parentheses > Kleene closure > concatenation > alternation.

- **Some properties:**
 - \(R^* = R^* R^* = (R^*)^* = R | R^* \).
 - \(R(SR)^* = (RS)^* R \).
 - \((R^* S)^* = \epsilon (R | S)^* S \).
 - \((RS^*)^* = \epsilon | R(R | S)^* \).
Every regular expression represents a regular language, and every regular language is represented by a regular expression.

Definition: **regular language**
- Basis: \emptyset, $\{\epsilon\}$, and $\{a\}$ are regular languages for all $a \in \Sigma$.
- Induction: If L and M are regular languages, then the following languages are also regular: $L \cup M$, LM and L^*.
Regular languages

- Given regular expression \(R \), \(L(R) \) stands for the language represented by \(R \).
 - the relation between regular expressions and their corresponding languages is established by a function \(L \), which is a function from strings to languages.
- relations between regular expressions and regular languages by definition:
 - basis: \(L(\emptyset) = \emptyset \), \(L(\epsilon) = \{\epsilon\} \), \(L(a) = \{a\} \) for each \(a \in \Sigma \)
 - induction: \(L(RS) = L(R)L(S) \), \(L(R|S) = L(R) \cup L(S) \), \(L(R^*) = L(R)^* \)
- The class of regular languages over an alphabet \(\Sigma \) is defined to consist of all languages \(L \) such that \(L = L(a) \) for some regular expression \(a \) over \(\Sigma \). That is, regular languages are all languages that can be described by regular expressions.
Examples of regular expression

Examples

Let $\Sigma = \{a, b\}$

- $a | b$ denotes $\{a, b\}$
- $(a | b)(a | b)$ denotes $\{aa, ab, ba, bb\}$
 i.e., $(a | b)(a | b) = aa | ab | ba | bb$
- a^* denotes $\{\epsilon, a, aa, aaa, \ldots\}$
- $(a | b)^*$ denotes the set of all strings of a's and b's (including ϵ)
 i.e., $(a | b)^* = (a^* b^*)^*$
- $a | a^* b$ denotes $\{a, b, ab, aab, aaab, aaaaab, \ldots\}$
Regular expressions and languages

Examples

Examples of regular expression

Examples

- Regular expressions are an inadequate specification method in general.
- $\{0^n1^n : n \geq 0\}$ is not regular.
Language recognition device

- An algorithm that is specifically designed, for some language L, to answer questions of the form *Is string w a member of L?* will be called a **language recognition device**.

- For example, a device for recognizing the language:

$$L = \{ w \in \{0, 1\}^* : w \text{ does not have 111 as a substring} \}$$

- by reading strings, a symbol at a time, from left to right, it might operate like this:
 - Keep a count, which starts at zero and is set back to zero every time a 0 is encountered in the input;
 - add one every time a 1 is encountered in the input;
 - stop with a No answer if the count ever reaches three
 - stop with a Yes answer if the whole string is read without the count reaching three.
Language generator

- To describe how a generic specimen in the language is produced.
- For example, regular expression such as $(\epsilon|b|bb)(a|ab|abb)^*$ maybe viewed as a way of generating members of a language:
 - To produce a member of L, first write down either nothing, or b, or bb
 - then write down a or ab, or abb
 - and do this any number of times, including zero
 - all and only members of L can be produced in this way.

Such language generators are not algorithms, but they are important and useful means of representing languages all the same.
Finite automata

- Finite automaton (finite state machine)
 - No *stored program* concept – the machine is the computation.
 - No auxiliary memory – the automaton fixes memory by its definition.
 - Input: a string on a *tape*
 - Read head moves over string (left to right).
 - Output: *Accept* or *Not Accept*
Finite automata

Input tape

Reading head

Finite control

Jie Jiang
REGULAR LANGUAGES AND FINITE AUTOMATA (1)
Finite automata

- **input tape**
 - made of squares, one symbol per square

- **reading head**
 - After reading an input symbol, moves one square to the right

- **finite control**
 - CPU is a finite collection of states
 - initial state
 - a set of final states
Finite automata

- CPU is a finite collection of states
 - initial state, a set of final states
 - At any instant, finite state automaton is in some state
 - As symbols are read, finite state automaton may change to another state
 - deterministic finite automaton: new state depends only on the current state and the symbol just read
 - nondeterministic finite automaton
 - repeat till the reading head reaches the end of the input string
 - accepted: it winds up in one of a set of final states
 - The language accepted by the machine is the set of strings it accepts
Finite automata

- A severely restricted model of an actual computer
 - complete absence of memory outside its fixed central processor
 - has a memory capacity that is fixed at the factory and cannot thereafter be expanded

- Why do we use finite automaton:
 - first be sure that the theory computers with limited memory is well understood
 - could be used to design several common types of computer algorithms and programs
 - lexical analysis phase of a compiler
 - the problem of finding an occurrence of a string within another string

- **Kleene’s theorem**: A language is regular \textit{iff} it is accepted by a finite state automaton.
Exercise 1

Try to write down the regular expressions that represent the following regular languages:

- $\{0, 1\}^*$
 - $(0|1)^*$

- $\{0, 1\}^+$
 - $(0|1)^+$

- $\{w | w \in \{0, 1\}^+ \text{ and } w \text{ has the substring } 10110\}$
 - $(0|1)^*10110(0|1)^*$

- $\{w | w \in \{0, 1\}^+ \text{ and } w(10) = 1\}$
 - $(0|1)^91(0|1)^*$
Exercise 1

- \(\{ w \mid w \in \{0, 1\}^+ \text{ and } w \text{ starts with 0, ends with 1} \} \)
 - \(0(0|1)^*1 \)

- \(\{ w \mid w \in \{0, 1\}^+ \text{ and if } w \text{ has at least two symbols of 1} \} \)
 - \((0|1)^*1(0|1)^*1(0|1)^* \)

- \(\{ w \mid w \in \{0, 1\}^* \text{ and if } w \text{ ends with 1, then its length is an even number; if } w \text{ ends with 0, then its length is an odd number} \} \)
 - \((0|1)^{2n+1}1|(0|1)^{2n}0 \ (n \in \mathbb{N}) \)
Exercise 2

Try to explain the regular languages represented by the given regular expressions:

- $(00|11)^+$
 - $\{w \mid w \in \{0, 1\}^* \text{ and } w \text{ consists of double 0 and double 1}\}$

- $(0|1)^*0100^*$
 - $\{w \mid w \in \{0, 1\}^* \text{ and } w \text{ ends with 010 plus consecutive 0s}\}$

- $(1|01|001)^*(\varepsilon|0|00)$
 - $\{w \mid w \in \{0, 1\}^* \text{ and } w \text{ does not have three consecutive 0s}\}$

- $((0|1)(0|1))^*|((0|1)(0|1)(0|1))^*$
 - $\{w \mid w \in \{0, 1\}^* \text{ and the length of } w \text{ is } 3n \text{ or } 2m \ (n \in \mathbb{N}, m \in \mathbb{N})\}$

- $((0|1)(0|1))^*((0|1)(0|1)(0|1))^*$
 - $\{w \mid w \in \{0, 1\}^* \text{ and the length of } w \text{ is } 3n + 2m \ (n \in \mathbb{N}, m \in \mathbb{N})\}$
Regular expressions and languages
 Finite representations
 Regular expression
 Regular languages

Example
 Examples of regular expression

Finite Automata
 Language recognizer and generator
 Finite Automata

Exercise
 Exercises for regular expression and language