Algorithms & Complexity

Space Complexity

Nicolas Stroppa
Patrik Lambert - plambert@computing.dcu.ie

CA313@Dublin City University. 2008-2009.

December 4, 2008
Hierarchy of problems

- NP
- NP-Comp
- P
- NP
- NP-Comp
- P
NP-intermediate Languages

If $P \neq NP$, then are there languages which neither in P or NP — complete?

The answer is yes. These languages are called NP-intermediate languages, and their class is called NPI. There are real problems in NP for which neither polynomial-time algorithms nor NP-completeness proofs have been found. It makes sense to assume that these belong to NPI, until we know differently.

Examples of such problems are:

- Graph isomorphism
- Composite number (Given $N \in \mathbb{Z}+$, find $m, n \in \mathbb{Z}+$ such that $mn = N$)
- Linear programming was considered NP-intermediate but in 1979 it was proven to be in P
Co-NP Problems

Definition (Complement)
The \textit{complement} of a decision problem X, denoted \overline{X}, is the decision problem in which the “Yes” instances of \overline{X} are the “No” instances of X and vice versa.

Examples

- Consider the problem: “is a number a prime number?”. Its complement is to determine whether a number is a composite number (a number which is not prime).
- Consider the subset sum problem: Given a set of integers $S = \{i_1, i_2, \ldots, i_n\}$, does any (non-empty) subset $A \subseteq S$ sum to 0? Its complement asks: Given a finite set of integers does every non-empty subset have a nonzero sum?
Co-NP Problems

Definition (Co-NP)

Co-NP is the class of complements of NP problems.

Example

- The subset sum problem is in NP (actually it is NP-complete) thus its complement problem is in co-NP.
Hierarchy of problems

Assuming $P \neq NP$ and $NP \neq co-NP$:

\[\text{NP} \cap \text{co-NP} \]

\[\text{NPC} \cap \text{P} \cap \text{co-NPC} \]
Space complexity

Two main characteristics for programs

▶ Time complexity: \sim CPU usage
▶ Space complexity: \sim RAM usage
Space complexity: an informal definition

Definition (Space complexity)

The *space complexity* of a program (for a given input) is the number of elementary objects that this program needs to store during its execution. This number is computed with respect to the size \(n \) of the input data.
Space complexity: a formal definition

Definition (Space complexity)
For an algorithm T and an input x, $DSPACE(T, x)$ denotes the number of cells used during the (deterministic) computation $T(x)$. We will note $DSPACE(T) = O(f(n))$ if $DSPACE(T, x) = O(f(n))$ with $n = |x|$ (length of x).
Note: $DSPACE(T)$ is undefined whenever $T(x)$ does not halt.
Space complexity: example 1

// note: x is an unsorted array
int findMin(int[] x) {
 int k = 0; int n = x.length;
 for (int i = 1; i < n; i++) {
 if (x[i] < x[k]) {
 k = i;
 }
 }
 return k;
}
Space complexity: example 1

// note: x is an unsorted array
int findMin(int[] x) {
 int k = 0; int n = x.length;
 for (int i = 1; i < n; i++) {
 if (x[i] < x[k]) {
 k = i;
 }
 }
 return k;
}

\[
T(\text{findMin}, n) = n + 2
\]

\[
T(\text{findMin}, n) = O(n)
\]
Space complexity: example 2

// note: x is an unsorted array
void multVect(int[] x, int[][][] a) {
 int k = 0; int n = x.length;
 for (int i = 1; i < n; i++) {
 for (int j = 1; j < n; j++) {
 a[i][j] = x[i] * x[j]
 }
 }
}
Space complexity: example 2

// note: x is an unsorted array
void multVect(int[] x, int[][][] a) {
 int k = 0; int n = x.length;
 for (int i = 1; i < n; i++) {
 for (int j = 1; j < n; j++) {
 a[i][j] = x[i] * x[j]
 }
 }
}

\[T(multVect, n) = n \times n + n + 2 \]
\[T(multVect, n) = O(n^2) \]
Polynomial space complexity

The class $PSPACE$ is defined as:

$$PSPACE = \bigcup_{k \in \mathbb{N}} DSPACE(n^k).$$

$PSPACE$ is the (complexity) class of decision problems that can be solved using a deterministic Turing Machine and a polynomial amount of space (⇒ polynomial space complexity).
Non-Deterministic \textit{SPACE}

For nondeterministic Turing machine the space complexity is denoted \textit{NSPACE}. \textit{NSPACE}(T, x) denotes the number of cells used by the \textit{non-deterministic} computation $T(x)$. We will note $\textit{NSPACE}(T) = O(f(n))$ if $\textit{SPACE}(T, x) = O(f(n))$ with $n = \lvert x \rvert$ (length of x).
Space complexity: some results

Savitch’s theorem:
For a function $f(n) \geq \log(n)$:

$$NSPACE(f(n)) \subseteq DSPACE((f(n))^2).$$

Corollary:

$$PSPACE = NPSPACE$$

This follows directly from the fact that the square of a polynomial function is still a polynomial function.

The set of problems with polynomial space complexity is the same if we consider deterministic or non-deterministic Turing machines...
Relations between time and space

\[P \subseteq NP \subseteq \text{PSPACE} \]
\[P \subseteq \text{co-NP} \subseteq \text{PSPACE} \]

Note: \(P \) is clearly a subset of \(\text{PSPACE} \), because you cannot use more than polynomial space in only polynomial time.
Relations between time and space

\[P \subseteq NP \subseteq \text{PSPACE} \]

\[P \subseteq \text{co-NP} \subseteq \text{PSPACE} \]