Automatic Plagiarism Detection
C. DALY and J. M. HORGAN
School of Computer Applications
Dublin City University

Abstract: Existing systems for detecting plagiarism
in computing are limited in that, while they are
reasonably successful in identifying pairs or groups
who submit similar work, they do not indicate
who the original author is. The system RoboProf
which we present here is a learning environment
for Java programming, with a novel technique to
detect plagiarism which overcomes this limitation.
For this paper, we used RoboProf to monitor a
class of 283 first year students of computing. Our
results show that nearly 40% of the class plagiarised
one or more pieces of course work, and that those
who plagiarised had significantly higher failure
rates, and significantly lower average marks, in the
end-of-semester examination than those who did all
their course work from scratch. The failure rates
increased and the average marks decreased with the
amount of plagiarism.

Keywords: Plagiarism; programming; watermark.

INTRODUCTION

Research from surveys on plagiarism indicates
that it is prevalent in university courses worldwide.
A report from the Office of Research of the Depart-
ment of Education of the United States [1] points to
studies which reveal that cheating ranged from 9% to
95% of the student bodies at American institutions
of higher learning. A survey of university students
in Moscow found that most students cheated some
time or other in their student life [2]. Recent British
surveys suggest that over half the students sampled
were involved in a range of cheating behaviour [3].

Over the last decade there has been an explosion of
electronic detection systems for detecting plagiarism
in computing. The many suggested techniques in-
clude attribute counting [4], use of standard software
metrics [5] and examination of redundant code [6].

There is even a server on the web, the Moss server
at Berkeley [7], which will process a list of programs
and indicate which ones are suspiciously similar. All
of these use pairwise comparisons of students’ work,
and they are reasonably successful in pointing to
pairs or groups who submit similar work. They are
limited however in that they do not indicate who is
the original author of the work. In addition, these
methods are unlikely to work on short segments of
code.

RoboProf, the system which we present here, is a
learning environment which automatically assesses
programming exercises, and has a built-in facility
for detecting plagiarism which overcomes these
limitations. This technique is a development of the
observation of Plauger [8], that a ‘fingerprint’ in the
form of invisible white space is often left inadver-
tently in the source code by the programmer, and
that this could be used to prove theft. Subsequently
Brassil [9] and Berghel [10] showed how to use this
fingerprint to protect copyright. What RoboProf
does is to actually insert a watermark into each
program, invisible to the author, but recognisable
to the computer if the same program is submitted
again. With this watermark, it is possible to identify
the original author of the work and subsequent
plagiarists. Our system has the additional property
that it is able to detect plagiarism on small segments
of code. It works, without the need to store previous
records, if students use work from a previous year,
and it works even if the student modifies the program
extensively, as long as they do not inadvertently
change the watermark.

We proceed in the next section to an overview of
RoboProf. In §3 we describe how RoboProf detects
plagiarism, determining the incidence and extent of
plagiarism in a large class of first year students of
computing. In §4, we compare the performance in
the end-of-semester examination for the plagiarists
and those who do their work from scratch. The
conclusions are discussed in the final section.

ROBOPROF

RoboProf is a learning environment for Java
programming which generates and assesses pro-
gramming exercises automatically. In operation,
RoboProf runs as a Java Servlet [11] in conjunction
with a Web server producing web pages for each
student. Each page is generated dynamically, based
on how the student is performing, and RoboProf can
generate problems based on student ability.

RoboProf loosely follows the progression rules
of the old style text-adventure games [12], where
one had to solve a problem in order to increase the
amount of space available for exploration. In practice
RoboProf presents a series of simple programming
exercises, which necessitate writing a short section
of code. It uses an applet to compile and test the
program on the student’s machine. The reason for
using the student’s own machine for doing this is
to reduce the load on the server (compiling and
running Java Programs require a lot of CPU cycles).
Students can use any Java-enabled web browser
to access RoboProf at any time, and to have their
progress relative to other members of the class
monitored and conveyed to them. They can request
to see the expected output alongside the output of
their own program for each set of input data, in
order to help to improve their understanding. These
procedures are documented in Daly [13].

For this research, RoboProf is used by a first
year class taking an introductory course in Java.
Throughout the semester, students are required to
complete a series of simple programming exercises,
automatically generated by RoboProf. The purpose
of these is to get students writing programs as
early as possible, and to develop their low-level
programming skills by frequent practice at writing
short programs. They can resubmit their program
as often as they wish, without penalty, until they are
satisfied with the standard they have achieved. Each

week, RoboProf analyses the submissions, logs the
results and returns them to students. RoboProf is
meant to provide formative assessment; the purpose
is to give the student as much practice as is necessary
to ensure that they have confidence in writing short
programs, and have mastered the basic syntax and
semantics of the language before moving on to longer
programs, where design issues and problem solving
are important.

IDENTIFYING PLAGIARISM

In addition to generating and assessing program-
ming exercises, RoboProf contains a technique which
detects plagiarism. It is designed so that it has
‘FILE-READ’ and ‘FILE-WRITE’ permissions on
the student’s computer. When a student submits
a program to RoboProf, the compiling and testing
applet first stores the program on the server, then
modifies the program by adding an identifying
watermark unknown to the student. This water-
mark is a binary code comprising the student’s ID,
the assignment number, the academic year and a
checksum. Spaces and tab characters at the end of
a line are used to form the binary code. This white
space is added to the end of main method, which is
unlikely to be changed if the program is modified.
Most text editors do not show excess white space
at the end of a line, so that the code is not visible
to the students. Each time a program is submitted,
the student’s ID number is compared with the
version in the original watermark, hence identifiing
the plagiarists. RoboProf presents a plagiarism
report, via the web, in which every detected case of
plagiarism is highlighted.

This method of detecting plagiarism has many ad-
vantages over the traditional pairwise comparison
methods:

e it identifies the author of the program;

e it will detect plagiarism even if the assignment
had been copied from a student’s work of a pre-

vious year. This is possible because the year the
original work is done is encoded into the water-
mark;

e it can detect plagiarism in short sections of code;

e it is programming language independent. Al-
though RoboProf is designed for Java program-
ming, this technique could be used in any pro-
gramming learning environment;

e it works even when the program has been ex-
tensively modified, as long as the watermark is
undisturbed;

e plagiarism is detected as soon as the program is
submitted. It is not necessary to collect a lot of
pairs and run an analysis program.

For this course, a total of 51 programming exer-
cises were generated by RoboProf for completion by
the end of the semester. Figure 1 charts the incidence
of plagiarism detected for the 283 students who par-
ticipated. It was found that a total of 102 (35.7%)
plagiarised at least one programming exercise. It can
be seen from Figure 1 that the number of programs
plagiarised was as high as 19 for some students.

A limitation of this method is that it cannot
detect retyped versions of another’s program; it
works only if the student submits an electronic copy
of the program. Hence, the amount of plagiarism
detected by RoboProf would be an underestimate of
the true amount.

PLAGIARISM AND PROGRAMMING
PERFORMANCE

At the end of the semester, there was a three hour
end-of semester invigilated examination where pla-
giarism is impossible. The examination, consisting
of five programs, each testing different programming
techniques, is presented and corrected by RoboProf.

To examine the difference in performance in the
examination for the varying levels of plagiarism, we
divided the students into four groups with increasing
numbers of plagiarised exercises, as given in Figure 2;

Figure 1: Incidence of Plagiarism
am

130 -

160 -
140 -
120 -

100]

Freque by

o 4
&

a4

o1 2 3 +« 5 & T 8 510 11 13 13

Mambe T Copkd

Figure 2: Plagiarist Groups

nang capied

Jar marg capied

124%

Table 1: Dunnett’s Test of Comparison of the Pla-
giarists and Non-Plagiarists

Number N Mean Diff. from SE Sig.
Copied Control of Diff.

0 (Control) 182 53.215

1 45 42.116 -11.010 5.038 .041
2 21 36.001 -17.206 6.974 .021
3 35 29.891 -23.324 5.585 .000

those who did all their who work (64.3%), those who
copied one (15.9%), two (7.4%) and three or more
(12.4%).

Average Marks

A one-way analysis of variance, carried out to
test the difference in performance in the end-of-year
examination between the groups, yielded an F-
statistic of 7.594 which is significant with p < .001.
Dunnett’s multiple comparison test [14] was invoked
to compare each of the plagiarist groups with the
non-plagiarist control group with respect to perfor-
mance in the end-of-year examination. The results,
given in Table 1, show that all three plagiarist groups
differ significantly from the non-plagiarist group with
respect to the result achieved in the end-of semester
examination; the difference increases with the rate
of plagiarism; the average performance of those who
plagiarised three or more is just under 30% while
those who did their own work achieved an average of
over 50%. Boxplots of the results for each of the four
groups, given in Figure 3, confirms the difference in
performance of the groups; 50% of the non-plagiarist
group obtained a mark of 60% or above, while no
more than 25% of the other three groups obtained a
mark in this range. Not surprisingly, the group who
plagiarised three or more had the greatest incidence
of low marks; 50% of them obtained a mark less
than 20% compared to 25% of the group that did
not copy.

Failure rates

Figure 3: Distribution of Examination Results
i

ref it

0 1 b

Mambe T Copkd

To pass the examination it was necessary to obtain
at least 40%; Table 2 gives the pass/fail rates in each
of the four groups. A chi-squared value of 14.383
indicates that the failure rates are significantly
different (p < .002) in the different groups. The
failure rate increases with the extent of plagiarism;
those who completed all the work from scratch had
a failure rate of 28%, while nearly 60% of those
who plagiarised three or more laboratory tests failed.

Table 2: Pass/Fail Rates

1] i

Number of Programs Plagiarised

0 1 2 3+ Overall
Pass | 131(72.0%) 28(62.2%) 10(46.6%) 15(42.9%) | 184(65.0%)
Fail | 51(28.0%) 17(37.8%) 11(52.4%) 20(57.1%) | 99(35.0%)

Completion Patterns.

Figure 4: Solve Time

10 Lo
ﬂ -
o] : e

Utkeek Comph &d

Our final analysis examines the times taken to com-
plete the RoboProf exercises. 104 students completed
the full set; of these 28 plagiarised and 76 did their
work from scratch. The completion times, given in
Figure 4, show that the non-plagiarist group tended
to complete the full set earlier than those who pla-
giarised; over 25% of the non-plagiarists finished in
the seventh week at least a week ahead of the plagia-
rists; the first set completed by the plagiarised did
not arrive until the eighth week. Nearly 50% of those
who plagiarised did not complete the full set until the
eleventh week, suggesting that these may have relied
on the early solvers.

SUMMARY AND DISCUSSION

Effective learning of computer programming
necessitates a lot of hands-on experience in writing
simple programs. With large classes, it is almost
impossible to monitor and correct these manually.
Another problem with large classes is that students
who lag behind on practical work may be tempted
to plagiarise, banking on the class size reducing the
risk of being discovered and thus defeating the whole

point of the exercises.

RoboProf overcomes both of these problems. In
the first place, by assessing the laboratory work
automatically, it is possible to give a large amount
of practical work without an increase in work for
the lecturer. Secondly, RoboProf has a facility of
detecting plagiarism which, if used at the first signs
of its occurrence, may reduce it at the later stages.

For this research we monitored 283 first year
students taking a one-semester course in Java. We
attempted to discourage plagiarism, at the outset,
by placing a policy on the module web site, which
pointed out that the sharing of code was not accept-
able and that the penalties were severe. We even
informed the students that we had software to detect
plagiarism. Despite this, we found that nearly 40%
of the class plagiarised the practical work to some
degree or other, and over 10% of the students could
be deemed serious plagiarists (copying three or more
exercises).

The plagiarists did significantly less well in the
end-of-semester examination than their honest peers;
their failure rate was significantly greater and their
average mark was significantly lower. It was possible
to monitor their performance on the practical work
throughout the semester, and we found that the pla-
giarists lagged behind the other students in terms
of when they completed. Clearly, the student who
copied relied on the early solver.

References

[1] S. Maramark, and M. B. Maline (eds), Academic
Dishonesty among College Students. Issues in
Education, (Office of Educational Research and
Improvement, Washington, DC, 1993).

[2] Y. Poltorak, Charting behaviour among stu-
dents of four Moscow universities Higher Edu-
cation, 1995, 225-246.

[3] http://www.le.ac.uk/tlu/tanrepl.html

[4] H. Jankowitz, Detecting Plagiarism in Com-
puter Science Programs . The Computer Jour-
nal, 31(1), 1998, 1-8.

[5] G. Whale, Identification of program similarity in
large populations, The Computer Journal, 33(2),
1990,

[6] J. Traxler, Cheating in Pascal programming as-
sessments with large classes, Proc. 3rd Annual
Conf. Teach. Comp., 1995, 340-355,

[7] Moss server at Berkeley, information at URL
http://www.coe.berkeley.edu/EPA /EngNews/98S /EN1S/aiken.html

[8] P. J. Plauger, Fingerprints, Embedded Systems
Programming, June 1994.

[9] J. Brassil,et al, Electronic marking and identifi-
cation techniques to discourage document copy-
ing, Technical Report, ATT Bell Laboratories.

[10] H. Berghel, Watermarking cyberspace, Comm.
ACM, 40(1), 1997, 19-24.

[11] J. Hunter, Java Servlet Programming, (O’Reilly
Associates, 1998).

[12] Colossal Cave Adventure doc-
umented on the web at URL
http://people.delphi.com/rickadams/adventure/.

[13] C. Daly, RoboProf and an introductory pro-
gramming course , Proc. 4th Annual Conf. In-
nov. Tech. Comp. Sci. Ed. ITiCSE 99 Cracow,
Poland, 1999.

[14] E. R. Dougherty, Probability and Statistics for
Engineering, Computing and Physical Sciences,
(Prentice-Hall, 1990).

