3 Partial Correctness

3.1 Introduction

Overview

- The proof rules that follow constitute an axiomatic semantics of our programming language:

\[
E ::= N \mid V \mid E_1 + E_2 \mid E_1 - E_2 \mid E_1 \times E_2 \mid \ldots \\
B ::= T \mid F \mid E_1 = E_2 \mid E_1 \leq E_2 \mid \ldots \\
C ::= \text{SKIP} \mid V := E \mid C_1 ; C_2 \mid \text{IF } B \text{ THEN } C_1 \text{ ELSE } C_2 \mid \text{BEGIN VAR } V_1 ; \ldots \text{ VAR } V_n ; C \text{ END} \mid \text{WHILE } B \text{ DO } C
\]

Judgements

- Three kinds of things that could be true or false have been introduced
 - statements of mathematics, e.g. \((X + 1)^2 = X^2 + 2 \times X + 1\)
 - partial correctness specifications \(\{P\} C \{Q\}\)
 - total correctness specifications \([P] C [Q]\)

- These three kinds of things are examples of judgements
 - a logical system provides rules for establishing the truth (i.e. proving) various kinds of judgements
 - Floyd-Hoare logic provides rules for proving partial correctness specifications
 - the laws of arithmetic, which are assumed known, provide ways of proving statements about integers

- \(\vdash S\) means statement \(S\) can be proved
 - how to prove predicate calculus statements assumed known
 - this course covers axioms and rules for proving program correctness statements

Syntactic Conventions

- The symbols \(V, V_1, \ldots, V_n\) stand for arbitrary variables
 - examples of particular variables are \(X, R, Q\) etc.

- The symbols \(E, E_1, \ldots, E_n\) stand for arbitrary expressions (or terms)
 - these are things like \(X + 1, \sqrt{2}\) etc. which denote values (usually numbers)

- The symbols \(S, S_1, \ldots, S_n\) stand for arbitrary statements
 - these are conditions like \(X < Y, X^2 = 1\) etc. which are either true or false

- The symbols \(C, C_1, \ldots, C_n\) stand for arbitrary commands of our programming language
Notation for Axioms and Rules

- The axioms of Floyd-Hoare logic are specified by schemas
 - these can be instantiated to get particular partial correctness specifications
 - an example is the Skip Axiom on the next slide
- The inference rules of Floyd-Hoare logic will be specified with a notation of the form
 \[\vdash S_1, \ldots, \vdash S_n \vdash S \]
 - this means the conclusion \(\vdash S \) may be deduced from the hypotheses \(\vdash S_1, \ldots, \vdash S_n \)
- the hypotheses can either all be theorems of Floyd-Hoare logic
- or a mixture of theorems of Floyd-Hoare logic and theorems of predicate calculus

3.2 The SKIP Command

SKIP

- Syntax: SKIP
- Semantics: the state is unchanged

The SKIP Axiom

\[\vdash \{P\} \text{SKIP} \{P\} \]

- It is an axiom schema
 - \(P \) can be instantiated with arbitrary predicate calculus formulae (statements)
- Instances of the SKIP axiom are:
 - \(\vdash \{Y = 2\} \text{SKIP} \{Y = 2\} \)
 - \(\vdash \{T\} \text{SKIP} \{T\} \)
 - \(\vdash \{R = X + (Y \times Q)\} \text{SKIP} \{R = X + (Y \times Q)\} \)

3.3 Assignment

Assignment

- Syntax: \(V := E \)
- Semantics: the state is changed by assigning the value of the term \(E \) to the variable \(V \)
- Example: \(X := X + 1 \)
 - this adds one to the value of the variable \(X \)
- The assignment axiom says that the value of a variable \(V \) after executing an assignment command \(V := E \) equals the value of the expression \(E \) in the state before executing it
- If a statement \(P \) is to be true after the assignment then the statement obtained by substituting \(E \) for \(V \) in \(P \) must be true before executing it
- Every statement about \(V \) in the postcondition must correspond to a statement about \(E \) in the precondition
- In the initial state \(V \) has a value which is about to be lost
Substitution Notation

- Define $P[E/V]$ to mean the result of replacing all occurrences of V in P by E
 - read $P[E/V]$ as ‘P with E for V’
 - for example: $(X + 1 > X)[Y + Z/X] = ((Y + Z) + 1 > Y + Z)$

- Think of this notation as the ‘cancellation law’:
 $V[E/V] = E$
 which is analogous to the cancellation property of fractions:
 $v \times (e/v) = e$

The Assignment Axiom

\[
\text{The Assignment Axiom}
\]
\[
\vdash \{P[E/V]\} \ V := E \ \{P\}
\]

Where V is any variable, E is any expression, P is any statement and the notation $P[E/V]$ denotes the result of substituting the term E for all occurrences of the variable V in the statement P.

- Instances of the assignment axiom are
 - $\vdash \{Y = 2\} \ X := 2 \ \{Y = X\}$
 - $\vdash \{X + 1 = n + 1\} \ X := X + 1 \ \{X = n + 1\}$
 - $\vdash \{E = E\} \ X := E \ \{X = E\}$ (if X does not occur in E)

The Backwards Fallacy

- Many people feel the assignment axiom is ‘backwards’
- One common erroneous intuition is that it should be:
 $\vdash \{P\} \ V := E \ \{P[V/E]\}$
 - where $P[V/E]$ denotes the result of substituting V for E in P
 - this has the false consequence $\vdash \{X = 0\} \ X := 1 \ \{X = 0\}$, since $(X = 0)[X/1] = (X = 0)$, as 1 does not occur in $(X = 0)$

- Another erroneous intuition is that it should be:
 $\vdash \{P\} \ V := E \ \{P[E/V]\}$
 - this has the false consequence $\vdash \{X = 0\} \ X := 1 \ \{V = 1\}$, which follows by taking P to be $X = 0$, V to be X and E to be 1
Expressions With Side-Effects

- The validity of the assignment axiom depends on expressions not having side effects
- Suppose that our language were extended so that it contained the ‘block expression’:
 \[\text{BEGIN } Y := 1; 2 \text{ END} \]
 - this expression has value 2, but its evaluation also ‘side effects’ the variable \(Y \) by storing 1 in it
- If the assignment axiom applied to block expressions, then it could be used to deduce:
 \[\vdash \{ Y = 0 \} X := \text{BEGIN } Y := 1; 2 \text{ END} \{ Y = 0 \} \]
 - since \((Y = 0)[E/X] = (Y = 0) \) (because \(X \) does not occur in \(Y = 0 \))
 - this is clearly false; after the assignment \(Y \) will have the value 1

3.4 Rules of Consequence

Precondition Strengthening

\[\vdash S_1, \ldots, \vdash S_n \]

- Recall that \[\vdash S \]
 means \(\vdash S \) can be deduced from \(\vdash S_1, \ldots, \vdash S_n \)

- Using this notation, the rule of precondition strengthening is:
 \[\frac{\vdash P \Rightarrow P', \quad \vdash \{ P' \} C \{ Q \}}{\vdash \{ P \} C \{ Q \}} \]

- Note the two hypotheses are different kinds of judgements

Example

- From
 \[\vdash X = n \Rightarrow X + 1 = n + 1 \]
 - trivial arithmetical fact
 \[\vdash \{ X + 1 = n + 1 \} X := X + 1 \{ X = n + 1 \} \]
 - instance of the assignment axiom

It follows by precondition strengthening that:

- \[\vdash \{ X = n \} X := X + 1 \{ X = n + 1 \} \]
 - \(n \) is an auxiliary (or ghost) variable
Example

From

- $\vdash T \Rightarrow (E = E)$
- $\vdash \{ E = E \} X := E \{ X = E \}$

It follows that if X is not in E (why?):

- $\vdash \{ T \} X := E \{ X = E \}$

Consider:

- $\{ T \} X := X + 1 \{ X = X + 1 \}$

Postcondition Weakening

- Just as the previous rule allows the precondition of a partial correctness specification to be strengthened, the following one allows us to weaken the postcondition

 \[
 \begin{array}{c}
 \vdash \{ P \} \ C \ \{ Q' \}, \\
 \vdash Q' \Rightarrow Q \\
 \hline
 \vdash \{ P \} \ C \ \{ Q \}
 \end{array}
 \]

- The rules precondition strengthening and postcondition weakening are sometimes called the rules of consequence

An Example Formal Proof

Here is a little formal proof:

\[
\begin{align*}
\vdash \{ R = X \} Q := 0 \{ R = X \land (Y \times Q) \} \\
= & \hspace{1em} \{ \text{postcondition weakening,} \\
 & \hspace{1em} \vdash R = X \land Q = 0 \Rightarrow R = X \land (Y \times Q) \ \} \\
\vdash \{ R = X \} Q := 0 \{ R = X \land Q = 0 \} \\
= & \hspace{1em} \{ \text{precondition strengthening,} \\
 & \hspace{1em} \vdash R = X \Rightarrow R = X \land 0 = 0 \ \} \\
\vdash \{ R = X \land 0 = 0 \} Q := 0 \{ R = X \land Q = 0 \} \\
= & \hspace{1em} \{ \text{assignment axiom} \} \\
& \hspace{1em} \text{True}
\end{align*}
\]

3.5 Sequences

Sequences

- Syntax: $C_1; \ldots; C_n$
- Semantics: the commands C_1, \ldots, C_n are executed in that order
- Example: $R := X; X := Y; Y := R$
 - the values of X and Y are swapped using R as a temporary variable
 - this command has the side effect of changing the value of variable R to the old value of variable X
- The following rule enables a partial correctness specification for a sequence $C_1; C_2$ to be derived from specifications for C_1 and C_2
The Sequencing Rule

\[
\frac{\vdash \{ P \} \ C_1 \ \{ Q \}, \ \vdash \{ Q \} \ C_2 \ \{ R \}}{\vdash \{ P \} \ C_1 ; C_2 \ \{ R \}}
\]

Example Proof

\[
\begin{align*}
&\vdash \{ X = x \wedge Y = y \} \ R := X ; \ X := Y ; \ Y := R \ \{ Y = x \wedge X = y \} \\
&\quad = \quad \{ \text{sequencing rule} \} \\
&\vdash \{ X = x \wedge Y = y \} \ R := X ; \ X := Y \ \{ R = x \wedge X = y \} \wedge \\
&\vdash \{ X = x \wedge X = y \} \ Y := R \ \{ Y = x \wedge X = y \} \\
&\quad = \quad \{ \text{sequencing rule} \} \\
&\vdash \{ X = x \wedge X = y \} \ Y := R \ \{ Y = x \wedge X = y \} \\
&\quad = \quad \{ \text{assignment axiom} \} \\
&\text{True}
\end{align*}
\]

3.6 Blocks

Blocks

- Syntax: \texttt{BEGIN VAR V_1; \ldots \ VAR V_n; C \ END}

- Semantics: the command C is executed, and then the values of V_1, \ldots, V_n are restored to the values they had before the block was entered
 - the initial values of V_1, \ldots, V_n inside the block are unspecified

- Example: \texttt{BEGIN VAR R; R := X; X := Y; Y := R \ END}
 - the values of X and Y are swapped using R as a temporary variable
 - this command does not have a side effect on the variable R

The Block Rule

- The block rule takes care of local variables:

\[
\begin{align*}
&\vdash \{ P \} \ C \ \{ Q \} \\
&\vdash \{ P \} \ \text{BEGIN VAR V_1; \ldots; VAR V_n; C \ END} \ \{ Q \}
\end{align*}
\]

where none of the variables $V_1 \ldots V_n$ occur in P or Q

- Note that the block rule is regarded as including the case when there are no local variables (the ‘$n = 0$’ case)
The Side Condition

The syntactic condition that none of the variables $V_1 \ldots V_n$ occur in P or Q is an example of a side condition

- without this condition the rule is invalid, as illustrated in the example below

From

$\vdash \{X = x \land Y = y\} \quad R := X; \quad X := Y; \quad Y := R \quad \{Y = x \land X = y\}$

it follows by the block rule that

$\vdash \{X = x \land Y = y\}$

BEGIN VAR R; \quad R := X; \quad X := Y; \quad Y := R END

$\{Y = x \land X = y\}$

since R does not occur in $X = x \land Y = y$ or $X = y \land Y = x$

However from

$\vdash \{X = x \land Y = y\} \quad R := X; \quad X := Y \quad \{R = x \land X = y\}$

one cannot deduce

$\vdash \{X = x \land Y = y\}$

BEGIN VAR R; \quad R := X; \quad X := Y END

$\{R = x \land X = y\}$

since R occurs in $R = x \land X = y$

Exercises

- Consider the specification:

 $\{X = x\} \quad \text{BEGIN VAR } X; \quad X := 1 \quad \text{END} \quad \{X = x\}$

 Can this be deduced from the rules given so far?

 1. if so, give a proof of it
 2. if not, explain why not and suggest additional rules and/or axioms to enable it to be deduced

- Is the following true?

 $\vdash \{X = x \land Y = y\}$

 $X := X + Y; \quad Y := X - Y; \quad X := X - Y$

 $\{Y = x \land X = y\}$

 – if so prove it
 – if not, give the circumstances when it fails

- Show:

 $\vdash \{X = R + (Y \times Q)\}$

 BEGIN R := R - Y; \quad Q := Q + 1 END

 $\{X = R + (Y \times Q)\}$

3.7 Conditionals

Conditionals

- Syntax: IF S THEN C_1 ELSE C_2

- Semantics:
 - if the statement S is true in the current state, then C_1 is executed
 - if S is false, then C_2 is executed
• Example: IF $X < Y$ THEN $\text{MAX} := Y$ ELSE $\text{MAX} := X$

 – the value of the variable MAX is set to the maximum of the values of X and Y

• One-armed conditional is defined by: IF S THEN C = define IF S THEN C ELSE SKIP

The Conditional Rule

$$
\begin{array}{c}
\vdash \{ P \land S \} C_1 \{ Q \}, \\
\vdash \{ P \land \neg S \} C_2 \{ Q \}, \\
\vdash \{ P \} \text{ IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{ Q \}
\end{array}
$$

• Suppose we are given: $\vdash \{ T \land X \geq Y \} \text{ MAX} := X \{ \text{MAX} = \max(X, Y) \}$
• and: $\vdash \{ T \land \neg(X \geq Y) \} \text{ MAX} := Y \{ \text{MAX} = \max(X, Y) \}$

• Then by the conditional rule it follows that: $\vdash \{ T \}$

 IF $X \geq Y$ THEN $\text{MAX} := X$ ELSE $\text{MAX} := Y$

 \{ $\text{MAX} = \max(X, Y) \}$

3.8 The WHILE Command

WHILE Commands

• Syntax: WHILE S DO C

• Semantics:

 – if the statement S is true in the current state, then C is executed and the WHILE command is repeated

 – if S is false, then nothing is done

 – thus C is repeatedly executed until the value of S becomes false

 – if S never becomes false, then the execution of the command never terminates

• Example: WHILE $\neg(X = 0)$ DO $X := X - 2$

 – if the value of X is non-zero, then its value is decreased by 2 and the process is repeated

• This WHILE command will terminate (with X having value 0) if the value of X is an even non-negative number

 – in all other states it will not terminate

Invariants

• Suppose $\vdash \{ P \land S \} C \{ P \}$
• then P is an invariant of C whenever S holds

• The WHILE rule says that:

 – if P is an invariant of the body of a WHILE command whenever the test condition holds

 – then P is an invariant of the whole WHILE command

• In other words:
– if executing \(C \) once preserves the truth of \(P \)
– then executing \(C \) any number of times also preserves the truth of \(P \)

- The \textbf{WHILE} rule also expresses the fact that after a \textbf{WHILE} command has terminated, the test must be false
 – otherwise, it would not have terminated

\textbf{The WHILE Rule}

\[
\frac{\vdash \{P \land S \} \ C \ \{P\}}{\vdash \{P\} \ \text{WHILE S DO} \ C \ \{P \land \neg S\}}
\]

- It is easy to show:
 \[
 \vdash \{X = R + (Y \times Q) \land Y \leq R\}
 \begin{array}{l}
 \text{BEGIN}\ R := R - Y; \ Q := Q + 1 \
 \text{END}\
 \{X = R + (Y \times Q)\}
 \end{array}
 \]

- Hence by the \textbf{WHILE} rule with \(P = X = R + (Y \times Q) \):
 \[
 \vdash \{X = R + (Y \times Q)\}
 \begin{array}{l}
 \text{WHILE Y \leq R DO}\
 \begin{array}{l}
 \text{BEGIN}\ R := R - Y; \ Q := Q + 1 \
 \text{END}\
 \{X = R + (Y \times Q) \land \neg(Y \leq R)\}
 \end{array}
 \end{array}
 \]

\textbf{Example}

- From the previous slide:
 \[
 \vdash \{X = R + (Y \times Q)\}
 \begin{array}{l}
 \text{WHILE Y \leq R DO}\
 \begin{array}{l}
 \text{BEGIN}\ R := R - Y; \ Q := Q + 1 \
 \text{END}\
 \{X = R + (Y \times Q) \land \neg(Y \leq R)\}
 \end{array}
 \end{array}
 \]

- It is easy to deduce that:
 \[
 \vdash \{T\} \ R := X; \ Q := 0 \ \{X = R + (Y \times Q)\}
 \]

- Hence by the sequencing rule and postcondition weakening:
 \[
 \vdash \{T\}
 \begin{array}{l}
 R := X; \ Q := 0; \
 \text{WHILE Y \leq R DO}\
 \begin{array}{l}
 \text{BEGIN}\ R := R - Y; \ Q := Q + 1 \
 \text{END}\
 \{R < Y \land X = R + (Y \times Q)\}
 \end{array}
 \end{array}
 \]