CA4006 Concurrent & Distributed Programming

Lecturer Dr. Martin Crane

martin.crane@dcu.ie
Office: L2.51 Ph: x8974
LECTURE 1: INTRO TO CONCURRENT & DISTRIBUTED PROCESSING
PREAMBLE: COURSE BASICS
Recommended Texts (online/in Library)

- Course Notes: www.computing.dcu.ie/~mcrane/CA4006.html

- Recommended Text:

- Additional Texts:

2. Java Concurrency in Practice, Brian Goetz et al, Addison-Wesley, 2012

Assessment Details

• 30% Continuous Assessment:
 – Java Concurrency Project (15%),
 • Set Week 5 of Semester,
 • Handed in Week 8
 – Web Services Project (15%)
 • Set Week 8 of Semester,
 • Handed in Week 12

• 70% May Exam
 – Three hours long
 – 4 from 5 Questions
Course Outline

1. Intro to Concurrent & Distributed Processing
2. Support for Correctness in Concurrency
3. Concurrent & Distributed Architectures
4. Enhanced Concurrency Support in Java Language
5. Programming with MPI & OpenMP
6. Message-Oriented Communication in DS
7. Distributed Object- & Web-Based Systems
8. Safe Access to Distributed Shared Resources
SECTION 1.0: BASICS OF CONCURRENT & DISTRIBUTED PROCESSING
Concurrent V Distributed Processing

- Both leverage *available* resources & boost performance.
- Hence much overlap between the two.
- All distributed systems must make use of some form of concurrent programming – otherwise no productivity.

- At simplest,
 - *Distributed computing* is mostly about infrastructure, physical or virtualized
 - V
 - *Concurrent programming* (implemented in application layer) deals with computations executing simultaneously while synchronising/communicating with each other.
Concurrent V Distributed Processing (/2)

• *Concurrent Programming* is facilitating the performance of multiple computing tasks at the same time.

• Example:
 – Using mouse, watching YouTube, updating a spreadsheet and scanning your PC only possible due to concurrent programming.
 – In that scenario, it’s *multi-tasking* which allows several programs or processes to access the CPU without waiting turns.
 – This permits intensive I/O processing and effective signal handling with resources being shared among multiple tasks.

• Concurrency also occurs via implementation of multiple threads of computation (*multi-threading*) in a single process/program

• Example:
 – Print a document while continuing to type in another document.
 – Without multi-threading, UIs would be very slow (system only handles one action at a time)
Concurrent V Distributed Processing (/3)

• **Distributed System** is a collection of *independent* computers that appears to its users as a *single coherent system*.

![Diagram of distributed system with middleware](image)

• Figure shows a distributed system organized as *middleware*.

• Middleware:
 – Layer of s/w logically placed between users/apps and o/s, communications
 – Users/apps offered one single system view
 – Extends over multiple machines, offering each app same interfaces/program.

• Wherever/whenever users interact with dist’d system, interaction should be *uniform* (all same) & *consistent* (up to date)
Concurrent V Distributed Processing (/4)

- **Goals of a Distributed System:**
 - Making resources available:
 - make multiple resources available to multiple users/apps;
 - should share them in a controlled & efficient manner for economic reasons;
 - Distribution transparency:
 - should hide physical aspect of process/resource distribution of dist’d system;
 - i.e. should appear as a single system;
 - Openness:
 - should offer services according to standard rules;
 - should describe syntax & semantics of these services;
 - Scalability
 - size (number of users &/or processes)
 - geography (distance between nodes)
 - admin (number of administrative domains)
Concurrent V Distributed Processing (/5)

- **Result**: very many types of Distributed Systems
- Can have distribution as regards:
 - different device *types* (grid + desktop + sensors)
 - *architectural tiers* (fat-thin client spectrum)
 - centralized/decentralized architectures (C/S → blockchain)
 - device *reliability* differences
 - different *locations* or even relocating at runtime
 - different data representations
 - possible *replication* of objects at different locations
SECTION 1.1: INTRO TO CONCURRENT PROCESSING
Intro to Concurrent Processing

• Basic Definitions;
• A Simple Analogy;
• More Advanced Definitions;
• Architectures for Concurrency;
• Concurrent Speedup;
• Applications to Multicore Computing.
A Preliminary Definition....

Concurrency is a property of systems in which:

1. Several computations can be in progress simultaneously, and
2. Potentially interacting with each other.

The computations may be:

– executing on multiple cores in the same chip,
– pre-emptively time-shared threads on the same processor, or
– executed on physically separated processors...
Concurrency, A Cure For All Woes?

- Multicore Systems;
 -
- Fast Networks;
 -
- Concurrency:
 -

Solution to today’s/tomorrow’s *Grand Challenge* problems in Climate Change, Bioinformatics, Astrophysics etc.?

...Sadly Not...
A Clear(er) Analogy of Concurrency

• **Concurrency** is about dealing with lots of things at once.
• **Parallelism** is about doing lots of things at once.

These are not the same, but they are related.

• **Concurrency** is about structure, *parallelism* is about execution.
• **Concurrency** provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable.

• Example:
 – Concurrent: using MS Word, mediaplayer.
 – Parallel: calculating a Vector dot product, cells being updated in excel
A Simple Example Problem to Make Things More Concrete

• Move a pile of obsolete language manuals to the incinerator.

• With only one gopher this will take too long.

1. From R. Pike “Concurrency is not Parallelism”, Waza, Jan 11 2012
A Simple Example With Gophers (cont’d)

• Maybe more gophers.....

• More gophers are not enough; they need more carts.
More Gophers

• More gophers and more carts

• Faster, but gives rise to bottlenecks at pile, incinerator.
• Also need to synchronize the gophers.
• A message (i.e. communication btw gophers) will do.
More Gophers

• Double everything
• Remove the bottleneck; make them really independent.

• This will consume input twice as fast.
• The *concurrent composition* of two gopher procedures.
More Gophers

• A Note on *Concurrent Composition*
• This design is not automatically parallel!
• What if only one gopher is moving at a time?
• Then it's still *concurrent* (that's in the design), just not *parallel*.
• However, it's automatically parallelizable!
• Moreover the concurrent composition suggests other models...
More Gophers: Another Design

- Three gophers in action, but with likely delays.
- Each gopher is an independently executing procedure, plus coordination (communication).
Even More Gophers:
Finer-grained concurrency

• Add another gopher procedure to return empty carts.

• 4 gophers in action for better flow, each doing a simple task.
• If we arrange everything right (implausible but not impossible)= 4 times faster than original 1-gopher design.
Even More Gophers (cont’d):
Finer-grained concurrency

• Observation:
 – Improved performance by adding a concurrent procedure to existing design.
 – More gophers doing more work; it runs better.
 – This is a deeper insight than mere parallelism.

• Four distinct gopher procedures:
 – load books onto cart
 – move cart to incinerator
 – unload cart into incinerator
 – return empty cart

• Different concurrent designs enable different ways to parallelize.
A Simple Example With Gophers (cont’d):
More parallelization!

• Can now parallelize on the other axis; the concurrent design makes it easy. 8 gophers, all busy!

• Or maybe no parallelization at all!
• Remember even if only 1 gopher is active at a time (zero parallelism), it's still a correct & concurrent solution.
Even More Gophers (cont’d):
Another design

• Here's another way to structure the problem as the concurrent composition of gopher procedures.

• Two gopher procedures, plus a staging pile.
Even more Gophers (cont’d): Another Design

• Parallelize this in the usual way:

 ![Diagram](image)

• i.e. run more concurrent procedures to get more throughput.
Even More Gophers (cont’d):
A Different Way…

• Bring a staging pile to the multi-gopher concurrent model:
Even More Gophers (cont’d):
A Different Way...

- Full on optimization:
The Lesson from All This...

• There are many ways to break the processing down.
• That's concurrent design.
• Now it’s broken down, parallelization falls out & correctness is easy.
• In our book transport problem, substitute:
 – *book pile* => *web content*
 – *gopher* => *CPU*
 – *cart* => *marshalling, rendering, or networking*
 – *incinerator* => *proxy, browser, or other consumer*
• Becomes a concurrent design for a scalable web service with Gophers serving web content.
What have we learned thus far?

- Concurrency is the *ability* to run several parts of a program or several programs in parallel.
- A modern multi-core computer has several CPU's or several cores within one CPU.
- Here we distinguish between processes and threads:
 - **Process**: runs independently and isolated of other processes.
 - Cannot directly access shared data in other processes.
 - Process resources allocated to it via OS, e.g. memory, CPU time.
 - **Threads**: (or lightweight processes)
 - Have their own call stack but can access shared data.
 - Every thread has its own memory cache.
 - If a thread reads shared data, stores it in its own memory cache.
 - A thread can re-read the shared data.
Concurrency: Some More Definitions

- **Multi-tasking**: A single CPU core can only run 1 task at once, means CPU actively executes instructions for that one task.
- Problem solved by scheduling which task may run at any given time and when another waiting task will get a turn.
- Amounts to *time-slicing* between the tasks.

Lecture 1: Introduction
Concurrency: Some More Definitions (cont’d)

- **Multi-Core:** multitasking OSs can truly run many tasks in parallel.
- Multiple compute engines work independently on different tasks.
- **OS Scheduling** dictates which task runs on the CPU Cores.

Dual-core systems enable multitasking operating systems to execute 2 tasks simultaneously
Concurrency: Some More Definitions (cont’d)

• **Multi-threading**: extends multitasking to application-level,
 – subdivides operations in one application into individual threads.

• Each thread can (conceptually) run in parallel.
• OS divides processing time among different applications and among each thread within an application.

Dual-core system enables multithreading
Concurrency: Side note on Multi-threading

• *Implicit* and *Explicit Multi-Threaded*ning
• All commercial processors use *explicit multithreading*
 — Concurrently execute instructions from different explicit threads
 — Interleave instructions from different threads on shared pipelines or parallel execution on parallel pipelines

• *Implicit multithreading* is concurrent execution of multiple threads extracted from a single sequential program
 — They are defined statically by compiler or dynamically by hardware
SECTION 1.2: ARCHITECTURAL CLASSIFICATION SYSTEMS
Computer Architecture Taxonomies for Concurrency

Processor Organizations

- Single Instruction, Single Data Stream (SISD)
 - Uniprocessor
 - Vector Processor
 - Array Processor
 - Multiple Instruction, Single Data Stream (MISD)
- Multiple Instruction, Multiple Data Stream (MIMD)
 - Distributed Memory (loosely coupled)
 - Clusters
 - Shared Memory (tightly coupled)
 - Symmetric Multiprocessor (SMP)
 - Nonuniform Memory Access (NUMA)
Computer Architecture Taxonomies (/2)

Flynn’s Classification

- **SISD Single Instruction Single Data**
 - Single processor
 - Single instruction stream
 - Data stored in single memory
 - Uni-processor
 - Old but still common (RISC)

- **SIMD Single Instruction Multiple Data**
 - Single machine instruction controls simultaneous execution
 - Number of processing elements each with associated data memory
 - Each instruction executed on different set of data by different processors
 - Vector & array processors (for graphics)
• **MISD Multiple Instruction Single Data**
 - Sequence of data
 - Transmitted to set of processors
 - Each processor executes different instruction sequence
 - No prototype so far (Cryptographic Algorithms?)

• **MIMD Multiple Instruction Multiple Data**
 - Set of processors
 - Simultaneously execute different instruction sequences on different data
 - SMPs, clusters & NUMA systems (more later)
 - Most modern Supercomputers use MIMD with SMPs for specific tasks.
 - Suited more to *functional decomposition* than *domain decomposition* (more shortly)
More on MIMD

• General purpose processor; each can process all instructions necessary
• Further classified by method of processor communication
• **Tight Coupling:**
 1. **Symmetric Multi-Processing (SMP)**
 – Processors share memory & communicate via that shared memory
 – Access time to given area of memory ~ same for each processor
 2. **Asymmetric Multi-Processing (ASMP)**
 – For SMP some cores used more than others (& some mostly unused)
 – With ASMP consume power & increase compute power only on demand
 3. **Non-uniform Memory Access (NUMA)**
 – Access times to different memory regions vary with distance wrt processor
 – Benefits limited to particular workloads, e.g. servers where data are often associated strongly with certain tasks or users
More on MIMD (/2)

- **Loose Coupling: Clusters**
 - Collection of independent *nodes* (uniprocessors or SMPs)
 - Interconnected to form a cluster
 - Often used as unified resource/ different users using *partitions*
 - Jobs are *real-time* or *batch*
 - Communication via fixed path or network connections
 - Alternative to SMP giving high performance & high availability
Program Decomposition

• Three methods to decompose problem into smaller processes for parallel execution: *Functional Decomposition*, *Domain Decomposition*, or combination

Functional Decomposition
- Decompose *problem into different processes* for distribution to processors for simultaneous execution
- Good when no static structure or fixed number of calculations

Domain/Data Decomposition
- Partition *problem data* & distribute to processors for simultaneous execution
- Good where:
 - Static data (solve large matrix)
 - Fixed domain but dynamic computation in various regions (fluid vortices models)
Lecture 1: Introduction

TOP 500

The List.

<table>
<thead>
<tr>
<th>NAME</th>
<th>SPECS</th>
<th>SITE</th>
<th>COUNTRY</th>
<th>CORES</th>
<th>Rmax FTLOPS</th>
<th>POWER Gflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tianhe-2 (Milkyway-2)</td>
<td>Intel Ivy Bridge (12C 2.2 GHz) & Xeon Phi (8C 1.1 GHz), Custom interconnect</td>
<td>NUDT</td>
<td>China</td>
<td>3,120,000</td>
<td>33.9</td>
<td>17.8</td>
</tr>
<tr>
<td>Titan</td>
<td>Cray XK7, Opteron 8274 (16C 2.2 GHz) + Nvidia Kepler GPU, Custom interconnect</td>
<td>DOE/SC/ORNl</td>
<td>USA</td>
<td>5,860,000</td>
<td>17.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Sequoia</td>
<td>IBM BlueGene/Q, Power BGC (16C 1.60 GHz), Custom interconnect</td>
<td>DOE/NSA/LLNL</td>
<td>USA</td>
<td>1,572,864</td>
<td>17.2</td>
<td>7.9</td>
</tr>
<tr>
<td>K computer</td>
<td>Fujitsu SPARC64 VII/plus (8C 2.0 GHz), Custom interconnect</td>
<td>RIKEN AICS</td>
<td>Japan</td>
<td>705,024</td>
<td>10.5</td>
<td>12.7</td>
</tr>
<tr>
<td>Mira</td>
<td>IBM BlueGene/Q, Power BGC (16C 1.60 GHz), Custom interconnect</td>
<td>DOE/SC/ANL</td>
<td>USA</td>
<td>786,432</td>
<td>8.59</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Performance Development

A Portable Implementation of the High Performance Linpack Benchmark for Distributed Memory Computers

![Performance Development Graph](http://icl.uky.edu/hpl/)
Lecture 1: Introduction
SECTION 1.3: SCALABILITY: METRICS & BARRIERS TO IT
The Ideal V The Real World...

• Ultimately would like system throughput to be directly proportional to the number of CPUs.

• Unfortunately this ‘perfect’ scenario is impossible to realise for various reasons:
 – Poor Design (how problem is broken down & solved);
 – Code Implementation (I/O, inefficient use of memory...);
 – Operating System Overhead;
 – Race Conditions;
 – Etc., etc.,
The Ideal V The Real World... (/2)

• **Metrics for Concurrency:**

 – Time spent on a calculation (i.e. *latency*, units \([T]\))

 – Rate to produce series of results (*throughput*, units \([T^{-1}]\))

 – *Power* consumed on a calculation

 – *Platform cost* required for the computation

 – How effectively computational power used in parallel program (**Efficiency**)

• Some of these we will return to later in the course
Scalability

• How much faster can a given problem be solved with N workers instead of one?
• How much more work can be done with N workers instead of one?
• **Strong Scaling**: same problem size, add more workers/processors
 – **Goal**: Minimize time to solution for a given problem
• **Weak Scaling**: same work per worker, add more workers/processors (overall problem size increases)
 – **Goal**: solve larger problems.
Barriers to Scalability

• **Fine- & Coarse-Grained, Embarrassing Parallelism:**

• Classify applications on how often their subtasks must synchronize/ inter-communicate:
 – *Fine-grained parallelism* exhibited if application subtasks must communicate multiple times per second;
 – *Coarse-grained parallelism*, if they don’t communicate as often,
 – *Embarrassing parallelism*, if they rarely/never have to communicate.

• Embarrassingly parallel applications are considered the easiest to parallelize.
Barriers to Scalability (/2)

• **Fine-grain parallelism** (typically loop level)
 – Can be done incrementally, one loop at a time
 – Does not require deep knowledge of the code
 – Many loops must be parallel for decent speedup
 – Potentially many synchronization points (at end of each parallel loop)

• **Coarse-grain parallelism**
 – Make larger loops parallel at higher call-tree level, potentially in-closing many small loops
 – More code is parallel at once
 – Fewer synchronization points, reducing overhead
 – Needs deeper knowledge of code
Barriers to Scalability (/3)

• **Load imbalance:**
 – Longest-running thread determines time to execute parallel code segment
 – Unequal work load distribution leads to idle processors, others work too much
 – Coarse grain parallelization, gives more opportunities for load imbalance

• **Too many synchronization points:**
 – Compiler puts synchronization points at start/exit of each parallel region
 – If too many small loops have been made parallel, synchronization overhead will compromise scalability.
SECTION 1.4: AMDAHL’S LAW FOR SINGLE & MULTI-CORE SYSTEMS
Amdahl’s Law

• Gene Amdahl divided a program into two sections,
 – a purely serial part (accounts for many of above issues)
 – and other which can be parallel.
• Let α be inherently serial fraction of program.
• Then the Speedup is given by:

$$S = \frac{T(\alpha + (1-\alpha))}{T(\alpha + \frac{1-\alpha}{P})} = \frac{P}{1+(P-1)\alpha}$$

• So, if the serial fraction $\alpha = 5\%$, then $S \leq 20$.
Amdahl’s Law (/2)

• This can be better seen in the following schematic:
Amdahl’s Law (/3)

• How does speedup change with different α?
Amdahl’s Law (/4)

- Graph of S against $1 - \alpha$ for different P
Amdahl’s Law (/5)

• The Sandia Experiments
 – Karp prize for first program to achieve a speed-up of 200 or better.
 – In 1988, Sandia reported speed-up $> 1,000$
 – This was on 1,024 processor system on three different problems.

• How is this possible?

• Moler’s Law
 – Amdahl assumed serial fraction α, independent of problem size.
 – Sandia experiments showed this to be false.
 – As problem size increases, inherently serial parts of program stay same or increase more slowly than problem size.
 – So Amdahl’s law should be

\[S \leq \frac{1}{\alpha(n)} \]
Amdahl’s Law (/6)

• So Amdahl’s law should be

\[S \leq \frac{1}{\alpha(n)} \]

• If problem size, \(n \uparrow, \alpha(n) \downarrow \) & potential Speedup \(\uparrow \).

• For example: Calculations on a 2D Grid

• Regular Problem Size Timings:
 – Grid Calculations: 85 seconds 85%
 – Serial fraction: 15 seconds 15%

• Double Problem Size Timings:
 – 2D Grid Calculations: 680 seconds 97.84%
 – Serial fraction: 15 seconds 2.16%
Amdahl’s Law (/7)

• So the speedup for a parallel program is not fixed, it’s influenced by a number of factors.

• By Sullivan’s Theorem:
 – Speedup = \text{min}(P, C)
 – where \(P \) is number of processors &
 – \(C \) is the concurrency of the program.

If \(N \) is number of operations in execution graph, & \(D \) is longest path through graph then concurrency \(C = \frac{N}{D} \).

• Max speed-up is property of parallel program structure.
Gustafson-Barsis’ Law

- **Gustafson-Barsis’ Law:**
- Recall *Strong scalability* assumes problem size is fixed in size as P increases – this is rarely the case.
 - Games consoles don’t run old 8-bit games fast but more complex games
 - Expectations of problem size alter with hardware developments
- As a result, Gustafson (1988) suggested reformulating Amdahl’s law:
 - …speedup should be measured by scaling the problem to number of processors, not by fixing problem size.
- **Weak scalability** measures speedup by increasing problem size.
- Gustafson-Barsis’ Law shows the limits of *weak scalability*:

$$S' = S(\alpha + (1 - \alpha)P)$$

where S' is the *Scaled Speedup*

1 reflected in Amdahl’s law
Gustafson-Barsis’ Law (/2)

- Illustrations of Gustafson’s Law

- Comparing Amdahl’s Law with Gustafson’s Law:
Amdahl’s Law for Multi-Core Computing

- More complex parallel hardware with arrival of multicore chips.
- More DOF in MC chips for designers than with single-core designs e.g. no. cores, simple/complex pipelines etc.
- Such issues get more complex as move to 000’s of cores per chip.
- Can also move towards more complex chip configurations with either an SMP or ASMP allocating cores to specific functions.

- Recall Amdahl’s law for Speedup:
 \[S = \frac{T(\alpha + (1-\alpha))}{T(\alpha + \frac{1-\alpha}{p})} \]

- Let \(f = 1 - \alpha \), be the parallelisable fraction, \(n \) the number of cores then:
 \[S = \frac{1}{1-f+f\frac{1}{n}} \]
Hill & Marty’s Extension To Amdahl’s Law

• So, taking Amdahl’s law for Speedup: $S = \frac{1}{1-f+n\frac{f}{n}}$

• Hill and Marty1 extend this to account for multicore costs.

• They use \textit{base core equivalent} or \textit{BCE}, a generic unit of \textit{cost}, accounting for area, power, dollars, or a combination.

• For 1 unit of BCE, a single processor delivering a single unit of baseline performance can be built.

• A budget of \textit{n} BCE’s, can be used for a single \textit{n} -BCE core, \textit{n} single-BCE cores, or in general $\frac{n}{r}$ cores each consuming \textit{r} BCEs.

\textbf{SMP with}

(a) 16 Cores &
(b) 4 Cores,
Respectively
Hill & Marty on Amdahl’s Law (cont’d): SMP

- Using a generic single-core performance model, authors assume an r-BCE core can give performance of $\text{perf}(r)$.
- They assumed functional relationship to be $\text{perf}(r) = \sqrt{r}$.
- The resulting speedup (assuming a SMP where all $\frac{n}{r}$ cores are identical) is given by:

$$S_{\text{SMP}}(f, n, r) = \frac{1}{1-f + \frac{f}{\text{perf}(r) + \frac{n}{r}}}$$

i.e., overall performance made up of a single r-BCE core on serial code part $(1 - f)$ & all $\frac{n}{r}$ cores on parallelisable part, (f)
Hill & Marty on Amdahl’s Law (cont’d): SMP

- Graphing:
 \[S_{\text{smp}}(f, n, r) = \frac{1}{1-f} \frac{1}{\text{perf}(r) + \frac{n}{r} \text{perf}(r)} \]

- We see the following:
 - For \(r=1 \) BCE/core, \(\frac{n}{r}=256 \) cores, get a relatively high speedup.
 - For \(r=256 \) BCE/core, \(\frac{n}{r}=1 \) cores get a pretty poor speedup.
 - For \(f = 0.975 \), max speedup = 51.2 occurs for \(r=7.1 \) base cores, \(\frac{n}{r}=36 \) cores.

- Implications:
 1. For SMP chips, need \(f \approx 1 \) so have to parallelise code to the max!
 2. Use more BCEs per core, \(r>1 \) (see example above for max speedup).
Hill & Marty on Amdahl’s Law (cont’d): ASMP

- Alternative to SMP is Asymmetric MP where some more powerful cores.
- Here assume that only one core is more powerful.
- With resource budget of 16 BCEs, ASMP can have 1 X 4 BCE core & 12 single BCE cores (see diagram).
- In general, chip has $1 + n - r$ cores since one larger uses r resources & rest have $n - r$ resources

- Resulting speedup: $S_{\text{asmp}}(f, n, r) = \frac{1}{1-f} \frac{1}{\text{perf}(r)} + \frac{f}{\text{perf}(r) + n - r}$

i.e., overall performance made up of:
- a single (more powerful) r-BCE core on serial code part $(1 - f)$ & all cores on parallelisable part, (f), delivering $\text{perf}(r) + (n - r)$.1

ASMP with 1 chip of 4 times the power Of the 12 others
Hill & Marty on Amdahl’s Law (cont’d): ASMP

- Graphing: \(S_{asmp}(\alpha, n, r) = \frac{1}{1-f} \frac{1}{\text{perf}(r)} + \frac{f}{\text{perf}(r)+n-r} \) for \(n=256 \) BCE

- Something very different to SMP:
 - For ASMP, max speedup often reached between \(1 \leq r \leq 256 \)
 - For ASMP, often larger speedup than SMPs (and never worse) e.g. \(f = 0.975 \), \(n=256 \), max speedup= 125 (v. SMP 51.2)

- Implications:
 1. ASMP has great potential for those codes with high serial fraction (small \(f \))
 2. Denser multicore chips increase both speedup benefits of going asymmetric and optimal performance of single large core.
 3. So local inefficiency is ok if global efficiency is increased (e.g. \(T_{\text{sequential}} \) reduced)
Summary

• Concurrency is about *dealing with* lots of things at once, Parallelism is about *doing* lots of things at once.
• Distributed Systems involve more issues than Concurrent ones.
• Terms such as *Multi-tasking, Multi-core, Multi-threading* (both *implicit* & *explicit*) important in concurrent systems.
• Flynn’s classification is established but essential architectural classification system in concurrency.
• When coding in parallel *Functional & Domain Decomposition* should be considered.
• Ability of programs to scale is important but many barriers exist.
 — E.g. Fine-/Coarse-grain Parallelism, load imbalance & synchronization.
• Amdahl’s law is a simple way to account for some of these barriers.
• Has been extended by Hill & Marty to *Multi-core* processors.