LECTURE 8: SAFE ACCESS TO DISTRIBUTED SHARED RESOURCES: TIME, SYNCHRONIZATION, REPLICATION & CONSISTENCY
Lecture Contents

• Introduction

• Time in Distributed Systems:
 – Physical Clocks; Logical Clocks: Totally Ordered Multicast
 – Lamport’s Algorithm: Vector Clocks: Causally Ordered Multicast

• Mutual Exclusion in Distributed Systems:
 – Centralized & Decentralized Solutions
 – Election Algorithms

• Consistency Algorithms:
 – Sequential & Continuous Consistency
 – Causal Consistency
 – Client-Centric Consistency

• Replication & Caching
Introduction

• DS essential in everyday life but come with set of unique challenges, e.g. synchronizing data & resolving conflicts.
• Saw above how processes communicate – related to this is how they cooperate & synchronize with each other.
• Here, mainly look at how processes can synchronize
• Examples of synchronization:
 – Thus important that multiple procs don’t simultaneously access shared resource, but cooperate to grant each other temporary exclusive access.
 – Multiple processes may also need to agree on event orderings, e.g. if message from process P was sent before/after another one from process Q
• Synchronization in DS thus much harder than synchronization in uniprocessor or multiprocessor systems.
• The problems & solutions are, by their nature, rather general, and occur in many different situations in DS.
SECTION 8.1: TIME IN DISTRIBUTED SYSTEMS
Time/Clocks

- **Physical clocks:**
 - **Problem:** Often simply need exact time, not just an ordering.
 - Previously solved by time in terms of *Sun Transits*.
 - **Solution:** Universal Coordinated Time (UTC):
 - Based on number of transitions per second of caesium 133 atom.
 - At present, real time is taken as average of ~50 caesium-clocks worldwide.
 - Introduces a *leap second* from time to time to account for fact that days are getting longer (e.g. due to tidal drag, orbital wobbles etc).
 - Note: UTC is broadcast through SW radio & satellite. Satellites can give an accuracy of about ±0.5 ms.

*Time to reach highest point in sky
**Quite accurate*
Time/Clocks (/2)

• **Physical clocks:**

 – **Problem**

 • Suppose have distributed system with a UTC-receiver in it ⇒ we still have to distribute its time to each machine.

 – **Basic principle**

 • Each machine has a timer generating interrupt \(H \) times per second.
 • There is a clock in machine \(p \) that ticks* on each timer interrupt.
 • Denote the value of that clock by \(C_p(t) \), where \(t \) is UTC time.
 • Ideally, we have that for each machine \(p \), \(C_p(t) = t \), or, \(\frac{dc}{dt} = 1 \)

*Adds one to a s/w clock keeping track of no. of ticks since some (agreed on) time in the past
Time/Clocks (/3)

• **Physical clocks:**

• In practice: \(1 - \rho \leq \frac{dC}{dt} \leq 1 + \rho \)

• From the figure:
 – If 2 clocks drift from UTC in opposite directions in time period \(\Delta t \), may be up to \(2\rho\Delta t \) apart

• Goal:
 – Never let 2 clocks differ by more than \(\delta \) than time units
 => synchronise every \(\delta/(2\rho) \) secs
 – \(\delta \) termed the *rate of drift*
Time/Clocks (/4)

- **Global positioning system**

 - **Basic idea**: Can get accurate account of time as side-effect of GPS
 - **Problem**: Assuming satellite clocks are accurate & synchronized:
 - Takes time before a signal reaches receiver
 - Receiver’s clock is definitely out of synch with satellite

Computing a position in a 2D space

- Basic idea: Can get accurate account of time as side-effect of GPS
- Problem: Assuming satellite clocks are accurate & synchronized:
 - Takes time before a signal reaches receiver
 - Receiver’s clock is definitely out of synch with satellite
Time/Clocks (/5)

• **Clock synchronization principles**

 – **Principle I**

 • Every machine asks a time server for accurate time min every $\delta/(2\rho)$ seconds (Network Time Protocol).

 • Ok, but need to measure round trip delay, including interrupts and processing incoming messages.

 – **Principle II**

 • Time server scans all machines periodically, averages, and inform each machine how it should adjust its time wrt. its present time.

 • Ok, probably get every machine in sync. Needn’t even propagate UTC time.

 – **Fundamental**: Have to take into account that setting time back never allowed \Rightarrow smooth adjustments.
Time/Clocks (/6)

• Logical Clocks: The Happened-before relationship
 – Problem: First must introduce notion of ordering before can order anything.
 – The happened-before relation
 • If \(a, b \) are 2 events in same process, \(a \) comes before \(b \), then \(a \rightarrow b \)*
 • If \(a \) is the sending of a message, and \(b \) is the receipt of that message, then \(a \rightarrow b \)
 • If \(a \rightarrow b \) and \(b \rightarrow c \), then \(a \rightarrow c \)

 – Note: This introduces a partial ordering of events in a system with concurrently operating processes
 • For such a system, \(x \rightarrow y \) is not true but neither is \(y \rightarrow x \)

*Read: “a happens before b”
Logical Clocks:

– Problem: How to maintain a global view on system behaviour that is consistent with the happened-before relation?

– Solution:

– Attach timestamp $C(e)$ to each event e, with following properties:

 • $P1$ If a and b are two events in the same process, and $a \rightarrow b$, then require $C(a) < C(b)$.

 • $P2$ If a corresponds to sending a message m, and b to the receipt of that message, then also $C(a) < C(b)$.

 • Everybody agrees on the values of $C(a), C(b)$.
Logical Clocks: Lamport’s Algorithm

Problem:
How to attach a timestamp to an event when there’s no global clock?
⇒ maintain a consistent set of logical clocks, one per process.

Solution:
Each process P_i has local counter C_i, adjusts it as per following rules:

1. For any 2 successive events taking place within P_i, C_i is incremented by 1.
2. Each time a message m is sent by process P_i, the message receives a timestamp $ts(m) = C_i$.
3. Whenever a message m is received by process P_j, P_j adjusts its local counter C_j to $\max\{C_j, ts(m)\}$ then executes step 1 before passing m to the application.

Notes:
- Property $P1$ is satisfied by (1); Property $P2$ by (2) and (3).
- Can still occur that 2 events happen simultaneously.
- Avoid this by breaking ties thro process IDs.
Time/Clocks (/9)

• **Logical Clocks: Example**

Three processes, each with its own clock. Lamport’s algorithm corrects the clocks. The clocks run at different rates.

– **Impossibility:** In (a) m_3 arrives at P_2 before it was sent from P_3
– **Lamport’s Algorithm:**
 • P_2 adjusts its clock to $1 +$ sending time ($=60$) on arrival of m_3 from P_3
Time/Clocks (/10)

- **Logical Clocks:**
 - Adjustments take place in the middleware layer:

The positioning of Lamport’s logical clocks in distributed systems
Time/Clocks (/11)

• **Logical Clocks:**

Example of Totally Ordered Multicast

 – **Problem:**

 – Sometimes must ensure that concurrent updates on a replicated DB are seen in the same order everywhere:

 • P1 adds $100 to an account (initial value: $1000)
 • P2 increments account by 1% interest in New York

 – Two replicas

 ![Diagram](image.png)

 Updating a replicated database & leaving it in an inconsistent state.

 – **Result:** In absence of proper synchronization:

 replica #1 ← $1111, while replica #2 ← $1110.
• **Logical Clocks:**

A Digression on Message Timestamps

- If an event \(a \) has timestamp \(ts(a) \) then \(ts(a)[i] - 1 \) denotes the number of events processed at \(P_i \) that causally precede \(a \)

- Hence, when \(P_j \) receives a message from \(P_i \) with timestamp \(ts(m) \), it knows the number of events that have occurred at \(P_i \) that causally preceded the sending of \(m \)

- This way, it knows how many events have occurred at other processes prior to the sending of \(m \)
Logical Clocks: *Example Totally Ordered Multicast*

- **Solution:**
 - Process P_i sends timestamped message msg_i to all others.
 - The message itself is put in a local queue $queue_i$.
 - Any incoming message at P_j * is queued in queue j, according to its timestamp, and acknowledged to every other process.

P_j passes a message msg_i to its application if:

1. msg_i is at the head of queue j
2. For each process P_k, there is a message msg_k in queue j with a larger timestamp. This means that msg_i is at the head of j's queue and has been acknowledged by other processes.

- **Note:** We are assuming that communication is reliable & FIFO ordered.

* e.g. acknowledgement.

Lecture 8: Safe Access to Dist’d Shared Resources
CA4006 Lecture Notes (Martin Crane 2015)
Time/Clocks (/14)

- **Logical Clocks: Example**

 - **Observation:**
 - Lamport’s clocks don’t guarantee that if \(C(a) < C(b) \) that \(a \) causally preceded \(b \)

 ![Diagram of logical clocks example]

 - From diagram, know that for \(P_2 \), \(T_{rcv}(m_1) < T_{snd}(m_3) \) but what can be concluded in general from this statement?
 - Know \(T_{rcv}(m_1), T_{snd}(m_3) \) correspond to events that took place at \(P_2 \) but also know \(T_{rcv}(m_1) < T_{snd}(m_2) \) but no causality there

Event \(a \): \(m_1 \) is received at \(T = 16 \);
Event \(b \): \(m_2 \) is sent at \(T = 20 \)
• **Logical Clocks**:

 – **Problem with Lamport’s Clocks:**

 • No guarantee that if \(C(a) < C(b) \) that \(a \) causally preceded \(b \)

 – **Solution: Vector Clocks:**

 • Each process \(P_i \) has an array \(VC_i[1 ... n] \), where \(VC_i[j] \) denotes no. of events that process \(P_i \) knows have taken place at process \(P_j \).

 • When \(P_i \) sends message \(m \), it adds 1 to \(VC_i[i] \), & sends \(VC_i \) along with \(m \) as vector timestamp \(ts(m) \).

 – Result: on arrival, recipient knows \(P_i \) ’s timestamp (i.e. the number of events at \(P_i \) that causally precede \(i \))

 • When a process \(P_j \) delivers a message \(m \) that it received from \(P_i \), with vector timestamp \(ts(m) \), it

 1. updates each \(VC_j[k] \) to \(\max\{VC_j[k], ts(m)[k]\} \)
 2. increments \(VC_j[j] \) by 1.

 • Put another way, \(ts(m)[k] \) is a tuple consisting of a process’s logical time & its last known time of process \(k \) in terms of no. of events that occurred at \(k \)

 • So with Vector Clocks know that if \(VC(a) < VC(b) \) ie \(a \) causally preceded \(b \)
Time/Clocks (/16)

- **Vector Clocks**: Causally Ordered Multicasting*
 - **Observation**:
 - Can now ensure that a message is delivered only if all causally preceding messages have already been delivered.
 - Note, in terms of messages sent and received $VC_i[j] = k$ means that P_i knows that k events have occurred at P_j
 - **Adjustment**:
 - P_i increments $VC_i[i]$ only on sending a message, & P_j “adjusts” $VC_j[k]$ (to max{$VC_j[k], ts(m)[k]$} on receiving a message (i.e., effectively doesn’t change $VC_j[j]$).

P_j postpones delivery of m until:
- $ts(m)[i] = VC_j[i] + 1$ (i.e. m is next message P_j expects from P_i)
- $ts(m)[k] \leq VC_j[k]$ for $k \neq i$. (i.e. P_j has seen all messages sent by P_i when P_i sent m)

* Not as strong as ** Totally Ordered Multicasting. **
Vector Clocks: Example 1

- Recall each time message \(m \) is sent by process \(P_i \), the message receives a timestamp \(ts(m) = C_i \) (\(C_i \) denotes no. of events at occurred at \(P_i \)).
- Thus when \(P_j \) receives \(m \) from \(P_i \) it knows about the number of events that have occurred at \(P_i \) before the sending of \(m \).

\[
\begin{align*}
\text{At } (1, 0, 0) & \text{ local time } P_0 \text{ sends message } m \text{ to } P_1, P_2 \\
& P_0 \text{ delivers } m^* \cos ts(m^*) = VC_0[1] + 1 \\
& \text{After } m \text{ arrives, } P_1 \text{ sends } m^* \text{ to } P_0, P_2 \\
& \text{Delivery of } m^* \text{ delayed by } P_2 \text{ until } m \text{ is received & delivered by } P_2 \text{'s application layer} \\
& ts(m) = (1, 0, 0) \Rightarrow VC_1(1,1,0) \\
& ts(m^*) = (1,1,0) \Rightarrow VC_0(1,1,0)
\end{align*}
\]
Time/Clocks (/18)

- **Vector Clocks**: Example 2
 Three processes P_0, P_1, P_2

 - Take $VC_2 = (0, 2, 2)$ & $ts(m) = (1, 3, 0)$ from P_0

 1. What information does P_2 have?
 2. What will it do when receiving m from P_0?

 - **1.** aware of 2 events that have taken place at P_1 & P_2 & none at P_0; when sent m, P_0 not aware of 2 events at P_2— but that doesn’t affect clock at P_2

 - **2.** To deliver m to P_2 recall rule for Causally Ordered Multicasting:

 P_j postpones delivery of m until:

 $a)$ $ts(m)[i] = VC_j[i] + 1$ (i.e. m is next message P_j expects from P_i)

 $b)$ $ts(m)[k] \leq VC_j[k]$ for $k \neq i$. (i.e. P_j has seen all messages sent by P_i when P_i sent m)

 - For $a)$ $ts(m)[0] = VC_2[0] + 1$ ✓
 - For $b)$ $ts(m)[1] \leq VC_2[1] \Rightarrow 3 \leq 2 \times$; $ts(m)[2] \leq VC_2[2] \Rightarrow 0 \leq 2$ ✓

 $\Rightarrow P_2$ will adjust $VC_2[0]$ to 1, $VC_2[1]$ to 3 deliver m & increment $VC_2[2]$ to 2

 $\Rightarrow VC_2 = (1, 3, 3)$
SECTION 8.2: MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS
Introduction

• Fundamental to distributed systems is the concurrency and collaboration among multiple processes.
• In concurrent/uniprocessor systems, this produces few insurmountable issues.
• Often, similarly, distributed processes need to simultaneously access same resources.
• Have seen that in terms of Totally/Causally Ordered Multicasting above that issues of Time in terms of events must be tackled as well.
• To prevent concurrent accesses corrupting the resource, or make it inconsistent, need solutions to grant ME access by processes.
• Distributed algorithms for ME problem break down into solutions:
 – Via a centralized server.
 – Completely decentralized, using a peer-to-peer system.
 – Completely distributed, with no topology imposed.
 – Completely distributed along a (logical) ring.
Mutual Exclusion

- **Approach 1: Centralized Server Solution**

 - **Problem:**
 - What happens if the Coordinator crashes?
 - Alternatively, if process blocks waiting to hear back from coordinator on requesting a resource, how to tell the difference between a wait and processor crash?

(a) Process 1 asks coordinator permission to access shared resource. Granted.

(b) Process 2 then asks permission to access same resource. Coordinator doesn’t reply.

(c) When process 1 releases resource, tells coordinator, which then replies to 2.

Lecture 8: Safe Access to Dist’d Shared Resources
Mutual Exclusion (/2)

• **Approach 2: Lin’s Decentralized Approach**

 – **Principle:**
 • Assume every resource is replicated n times (i.e. a peer-to-peer approach), with each replica having its own coordinator:
 \[\Rightarrow \text{access requires a majority vote from } m > \frac{n}{2} \text{ coordinators.} \]

 • A coordinator always responds immediately to a request from a client to access (read/write) a replica.

 – **Assumption:**
 • When a coordinator crashes, it will recover quickly, but will have forgotten about permissions it had granted.
Mutual Exclusion (/3)

- **Approach 2: Lin’s Decentralized Approach (cont’d)**

 - **Issue:** How robust is this system?

 - Let $p = \Delta t / T$ denote the probability that a coordinator crashes and recovers in a period Δt while having an average lifetime T
 - No memory after crash, so coordinator can be open to new requests
 - Have DHT system with each node participating for ~3 hours on end.
 - Given that
 - m here is number of replicas voting for a particular ME write
 - $2m - n$ coordinators need to reset in order to violate correctness of vote.

 \Rightarrow probability that k out m coordinators reset during same $\Delta t / T$:

 $$P[\text{violation}] = p_v = \sum_{k=2m-n}^{m} \binom{m}{k} p^k (1 - p)^{m-k}$$

Access time of 10s over 3 hours period
Mutual Exclusion (/4)

- **Approach 3: Ricart & Agrawala’s (Distributed) Algorithm**

 Problem:
 Often, probably correct algorithm insufficient. Need *deterministic* dist’d ME.

 Principle:
 Same as Lamport’s (clock synchronization) except that acks aren’t sent. Instead, replies (i.e. grants) are sent only when:

 - The receiving process has no interest in the shared resource; or
 - The receiving process is waiting for the resource, but has lower priority (known through comparison of timestamps).
 - In all other cases, reply is deferred, implying some more local admin.

 ![Diagram](image1)
 (a) 2 procs want to access shared resource at same time.

 ![Diagram](image2)
 (b) Process 0 has lowest timestamp, so it wins.

 ![Diagram](image3)
 (c) When 0 is done, sends OK also, so 2 can go ahead.
Mutual Exclusion (/5)

- **Approach 4: Token ring algorithm**
 - **Problem**
 - With 3. deadlock is ok; starvation is ok. However 1.’s single point of failure now replaced by n points of failure (ie if any process crashes, can’t reply).
 - **Essence:**
 - Organize processes in a logical ring, let token be passed between them.
 - Process holding token is allowed to enter critical region (if it wants to).

- Ring is initialized, process 0 is given a token. The token circulates.
- Passes from k to $k + 1$ (mod ring size) in point-to-point messages.
- Process gets token, checks if needs shared resource. If so, process does so & releases the resources. After finishing, passes token along the ring.
- Cannot immediately enter resource again using the same token.
- If process gets token neighbour & doesn’t want resource, passes token.
Mutual Exclusion (/6)

- A Comparison of the Four Mutual Exclusion Algorithms
 - **Centralized algorithm** is simplest and also most efficient.
 - It requires only 3 msgs to enter/leave CS: request, grant to enter, release to exit.
 - **Decentralized case**, messages need to be sent
 - One for each m coordinators, but maybe many attempts needed (hence k).
 - **Distributed**
 - $n - 1$ requests (one to each other processes, $n - 1$ grants, total of $2(n - 1)$.
 - For **token ring algorithm**, the number is variable.
 - If every proc constantly wants to enter CS region each token pass will result in one entry and exit, for an average of one message per critical region entered.
 - At other extreme, token sometimes circulate for hours without any interest in it.
 - In this case, the number of messages per entry into a critical region is unbounded.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Messages per entry/exit</th>
<th>Delay before entry (in message times)</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>3</td>
<td>2</td>
<td>Coordinator crash</td>
</tr>
<tr>
<td>Decentralized</td>
<td>$3mk, k = 1,2,\ldots$</td>
<td>$2m$</td>
<td>Starvation, low efficiency</td>
</tr>
<tr>
<td>Distributed</td>
<td>$2(n - 1)$</td>
<td>$2(n - 1)$</td>
<td>Crash of any process</td>
</tr>
<tr>
<td>Token ring</td>
<td>1 to ∞</td>
<td>0 to $n - 1$</td>
<td>Lost token, process crash</td>
</tr>
</tbody>
</table>
Mutual Exclusion (/7)

- Election algorithms
 - **Principle**
 - Algorithms (as above) require one process act as a coordinator.
 - How to select this special process dynamically?
 - **Note**
 - In many systems coordinator chosen by hand (e.g. file servers).
 - This leads to centralized solutions ⇒ single point of failure.
 - **Question**
 - Coordinator chosen on the fly, to what extent can refer to *centralized* or *distributed* solution?
 - Is a fully distributed solution, i.e. one without a coordinator, always more robust than any centralized/coordinated solution?
Mutual Exclusion (/8)

- Election By Bullying
 - **Principle**
 - Each process has an associated priority (weight).
 - Highest priority process should always be elected as the coordinator.
 - **Issue**: How do we find the heaviest process?
 - Any process can start an election by sending election message to all other processes (assuming don’t know others’ weights).
 - If process P_{heavy} gets election message from lighters P_{light}, sends it a take-over message ruling P_{light} out of the race.
 - If a process doesn’t get a take-over message back, it wins, sends victory message to all other processes.
 - Example of this shown overleaf.
Mutual Exclusion (9)

- Election By Bullying Example

![Diagram of Election by Bullying Example]

1. Election
2. OK
3. Previous coordinator has crashed
4. Coordinator
5. Election

Lecture 8: Safe Access to Dist’d Shared Resources
CA4006 Lecture Notes (Martin Crane 2015)
Mutual Exclusion (/10)

• Alternative: Ring Algorithm
 – *Centralized algorithm* is simplest and also most efficient.
 – All processes organized in ring
 – If P notices no coordinator, sends election message to successor with own process number in body of message
 • If successor is down, skip to next process, etc.
 – If Q gets election msg, adds own process number to list in msg body