LECTURE 8: SAFE ACCESS TO DISTRIBUTED SHARED RESOURCES: TIME, SYNCHRONIZATION, REPLICATION & CONSISTENCY
Lecture Contents

• Introduction

• Time in Distributed Systems:
 – Physical Clocks; Logical Clocks: Totally Ordered Multicast
 – Lamport’s Algorithm: Vector Clocks: Causally Ordered Multicast

• Mutual Exclusion in Distributed Systems:
 – Centralized & Decentralized Solutions
 – Election Algorithms

• Consistency Algorithms:
 – Sequential & Continuous Consistency
 – Causal Consistency
 – Client-Centric Consistency

• Replication & Caching
 – Client- & Server-initiated caching
Introduction

• DS essential in everyday life but has unique challenges, e.g. synchronizing data & resolving conflicts.
• Must replicate content but such replicas must be kept consistent with each other.
• Saw above how processes communicate – related to this is how they cooperate & synchronize with each other.
• Here, mainly look at how processes can synchronize:
 – So, vital that multiple procs don’t simultaneously access shared resource, but cooperate to grant each other temporary *exclusive* access.
 – Multiple processes may also need to agree on *event orderings*, e.g. message from process P sent before/ after another from process Q
• Synchronization in DS thus much harder than synchronization in uniprocessor or multiprocessor systems.
• The problems & solutions are, by their nature, rather general, and occur in many different situations in DS.
SECTION 8.1: TIME IN DISTRIBUTED SYSTEMS
Time/Clocks

• *Physical clocks*:
 – *Problem*: Often simply need exact time, not just an ordering.
 • Previously solved by time in terms of *Sun Transits*.
 – *Solution*: Universal Coordinated Time (UTC):
 • Based on number of transitions per second of caesium 133 atom**.
 • At present, real time is taken as average of ~50 caesium-clocks worldwide.
 • Introduces a *leap second* from time to time to account for fact that days are getting longer (e.g. due to tidal drag, orbital wobbles etc).

• Note: UTC is broadcast through SW radio & satellite. Satellites can give an accuracy of about ±0.5 ms.

*Time to reach highest point in sky
**Quite accurate
Time/Clocks (/2)

• **Physical clocks:**

 — **Problem**

 • Suppose have distributed system with a UTC-receiver in it ⇒ we still have to distribute its time to each machine.

 — **Basic principle**

 • Each machine has a timer generating interrupt \(H \) times per second.
 • There is a clock in machine \(p \) that ticks* on each timer interrupt.
 • Denote the value of that clock by \(C_p(t) \), where \(t \) is UTC time.
 • Ideally, we have that for each machine \(p \), \(C_p(t) = t \), or \(\frac{dc}{dt} = 1 \)

*incs s/w clock counting no. of ticks since some (agreed on) time in the past
Time/Clocks (/3)

- **Physical clocks:**
 - In practice: \(1 - \rho \leq \frac{dC}{dt} \leq 1 + \rho\)
 - \(\rho\) is the clock’s **skew**
 - From the figure:
 - 2 clocks drifting from UTC in opposite directions in time \(\Delta t\), may be \(\leq 2\rho\Delta t\) apart
 - Goal:
 - Don’t let 2 clocks differ by more \(\delta\) than time units
 => synchronise every \(\frac{\delta}{(2\rho)}\) secs
 - \(\delta\) termed the **rate of drift**

Relation btw clock time & UTC when clocks tick at different rates
Time/Clocks (/4)

- **Global positioning system**

 - **Basic idea**: Can get accurate account of time as side-effect of GPS
 - **Problem**: Assuming satellite clocks are accurate & synchronized:
 - Takes time before a signal reaches receiver
 - Receiver’s clock is definitely out of synch with satellite

Computing a position in a 2D space
Measured distance, \(d_i = c(\text{time for light to go from satellite to ship}) \)

So \(d_i = c\Delta_i \)

But \(\Delta_i = (T_{\text{now}} - T_i) + \Delta_r \) (\(T_i \) is a satellite’s timestamp)

\[\Rightarrow d_i = c\Delta_i - c\Delta_r \]

\(\Delta_i \) is measured time diff, \(\Delta_r \) is correction for clock deviation

\[\Rightarrow d_i = c\Delta_i - c\Delta_r = \sqrt{(x_i - x_r)^2 + (y_i - y_r)^2 + (z_i - z_r)^2} \]

i.e. with 4 satellites, now have 4 equations in 4 unknowns
Time/Clocks (/6)

• **Clock synchronization principles**
 – **Principle I**
 • Every machine asks a time server for accurate time min every \(\delta/(2\rho) \) seconds (Network Time Protocol).
 • Ok, but must measure round trip delay, incl interrupts & processing incoming messages.

 ![Diagram of time synchronization](image)

 > Getting current time from a time server

 ![Diagram of time synchronization](image)

 > ![Diagram of time synchronization](image)

 > ![Diagram of time synchronization](image)

 > ![Diagram of time synchronization](image)

 – **Principle II**
 • Time server scans all machines periodically, averages, informs each how to adjust its time wrt. its present time.
 • Ok, probably get every machine in sync. Needn’t even propagate UTC time.
 – **Fundamental**: Have to take into account that setting time back never allowed \(\Rightarrow \) smooth adjustments.
Time/Clocks (/7)

• **Logical Clocks**: *The Happened-before* relationship

 – **Problem**: First must introduce notion of ordering before can order anything.

 – The *happened-before* relation

 • If a, b are 2 events in same process, a comes before b, then $a \rightarrow b$*

 • If a is the sending of a message, and b is the receipt of that message, then $a \rightarrow b$

 • If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$

 – **Note**: This introduces a *partial ordering* of events in a system with concurrently operating processes

 • For such a system, $x \rightarrow y$ is not true but neither is $y \rightarrow x$

Read: “a happens before b”
Time/Clocks (/8)

• **Logical Clocks:**
 – **Problem:** How to keep a global view on system behaviour that is consistent with the *happened-before* relation?

 – **Solution:**

 – Attach timestamp $C(e)$ to each event e, with following properties:

 • $P1$ If a and b are two events in the same process, and $a \rightarrow b$, then require $C(a) < C(b)$.

 • $P2$ If a corresponds to sending a message m, and b to the receipt of that message, then also $C(a) < C(b)$.

 • Everybody agrees on the values of $C(a), C(b)$.
Time/Clocks (/9)

• **Logical Clocks:** Lamport’s Algorithm

 – **Problem:**
 – How to attach a timestamp to an event when there’s no global clock? ⇒ maintain a consistent set of logical clocks, one per process.

 – **Solution:**
 – Each process P_i has local counter C_i, adjusts it as per following rules:
 1. For any 2 successive events taking place within P_i, C_i is incremented by 1.
 2. Each time a message m is sent by process P_i, the message receives a timestamp $ts(m) = C_i$.
 3. On receipt of message m by process P_j, P_j adjusts its local counter C_j to $\max\{C_j, ts(m)\}$ then executes step 1 before passing m to the application.

 – **Notes**
 • Property **P1** is satisfied by (1); Property **P2** by (2) and (3).
 • Can still occur that 2 events happen simultaneously.
 • Avoid this by breaking ties thro process IDs.

Note: C_i is no. of events that have occurred at i.
Time/Clocks (/10)

Logical Clocks: Example

<table>
<thead>
<tr>
<th>P<sub>1</sub></th>
<th>P<sub>2</sub></th>
<th>P<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>42</td>
<td>56</td>
<td>70</td>
</tr>
<tr>
<td>48</td>
<td>64</td>
<td>80</td>
</tr>
<tr>
<td>54</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Impossibility:** In (a) \(m_3 \) arrives at \(P_2 \) before it was sent from \(P_3 \)

- **Lamport’s Algorithm:**
 - \(P_2 \) adjusts its clock to \(1 + \) sending time \((=60)\) on arrival of \(m_3 \) from \(P_3 \)

Three processes, each with its own clock. Lamport’s algorithm corrects the clocks. The clocks run at different rates.
Time/Clocks (/11)

- **Logical Clocks:**
 - Adjustments take place in the middleware layer:

![Diagram of logical clocks in distributed systems]

The positioning of Lamport’s logical clocks in distributed systems
Logical Clocks:

Example of Totally Ordered Multicast

- **Problem:**
 - Sometimes must ensure that concurrent updates on a replicated DB are seen in the same order everywhere:
 - P1 adds $100 to an account (initial value: $1000)
 - P2 increments account by 1% interest in New York
- Two replicas

![Diagram](https://via.placeholder.com/150)

Updating a replicated database & leaving it in an inconsistent state.

- **Result:** In absence of proper synchronization:

 replica #1 \leftarrow 1111, while replica #2 \leftarrow 1110.

Lecture 8: Safe Access to Dist’d Shared Resources
CA4006 Lecture Notes (Martin Crane 2017)
Time/Clocks (/13)

• Logical Clocks: *Example Totally Ordered Multicast*

 — *Solution:*

 • Process P_i sends timestamped message msg_i to all others.
 • The message itself is put in a local queue $queue_i$.
 • Any incoming message at P_j * is queued in queue j , according to its timestamp, and acknowledged to every other process.

 P_j passes a message msg_i to its application if:

 (1) msg_i is at the head of queue j

 (2) For each process P_k , there is a message msg_k in queue j with a larger timestamp. This means that msg_i is at the head of j ‘s queue and has been acknowledged by other processes.

 — *Note:* We are assuming that communication is *reliable & FIFO ordered.*

 * e.g. acknowledgement.

Lecture 8: Safe Access to Dist’d Shared Resources CA4006 Lecture Notes (Martin Crane 2017)
Logical Clocks: Example

- Observation:
 - Lamport’s clocks don’t guarantee that if $C(a) < C(b)$ that a causally preceded b

From diagram, know that for P_2, $T_{rcv}(m_1) < T_{snd}(m_3)$ but what can be concluded in general from this statement?

Know $T_{rcv}(m_1), T_{snd}(m_3)$ correspond to events that took place at P_2 but also know $T_{rcv}(m_1) < T_{snd}(m_2)$ but no causality there.

Event a : m_1 is received at $T = 16$;
Event b : m_2 is sent at $T = 20$
• **Logical Clocks:**

 – *Problem with Lamport’s Clocks:*

 • No guarantee that if \(C(a) < C(b) \) that \(a \) causally preceded \(b \)

 – *Solution: Vector Clocks:*

 • Each process \(P_i \) has an array \(VC_i[1 ... n] \), where \(VC_i[j] \) denotes no. of events that process \(P_i \) knows have taken place at process \(P_j \).

 • When \(P_i \) sends message \(m \), it adds 1 to \(VC_i[i] \), & sends \(VC_i \) along with \(m \) as *vector* timestamp \(ts(m) \).

 – Result: on arrival, recipient knows \(P_i \)'s timestamp (i.e. the number of events at \(P_i \) that causally precede \(i \))

 • When a process \(P_j \) delivers a message \(m \) that it received from \(P_i \) with vector timestamp \(ts(m) \), it

 (1) updates each \(VC_j[k] \) to \(\max\{VC_j[k], ts(m)[k]\} \)

 (2) increments \(VC_j[j] \) by 1.

 • Put another way, \(ts(m)[k] \) is a tuple consisting of a process’s logical time & its last *known* time of process \(k \) in terms of no. of events that occurred at \(k \)

 • So with Vector Clocks know that if \(VC(a) < VC(b) \) ie \(a \) causally preceded \(b \)
Time/Clocks (/16)

• Vector Clocks:

A Digression on Message Timestamps

- If event a has timestamp $ts(a)$ then $ts(a)[i] − 1$ denotes number of events processed at P_i that causally precede a.

- Hence, when P_j gets a message from P_i timestamped $ts(m)$, it knows how many events have occurred at P_i that causally preceded the sending of m.

- This way, it knows how many events have occurred at other processes prior to the sending of m by P_i.
Time/Clocks (/17)

- **Vector Clocks**: Causally Ordered Multicasting*
 - **Observation**:
 - Can now ensure that a message is delivered only if all causally preceding messages have already been delivered.
 - Note, in terms of messages sent and received $VC_i[j] = k$ means that P_i knows that k events have occurred at P_j
 - **Adjustment**:
 - P_i increments $VC_i[i]$ only on sending a message, & P_j “adjusts” $VC_j[k]$ (to $\max\{VC_j[k], ts(m)[k]\}$) on receiving a message (i.e., effectively doesn’t change $VC_j[j]$).

P_j postpones delivery of m until:
- $ts(m)[i] = VC_j[i] + 1$ (i.e. m is next message P_j expects from P_i)
- $ts(m)[k] \leq VC_j[k]$ for $k \neq i$. (i.e. P_j has seen all messages seen by P_i when P_i sent m)

* Not as strong as **Totally Ordered Multicasting**.
Time/Clocks (/18)

• **Vector Clocks**: Example 1

 – Recall each time message \(m \) is sent by process \(P_i \), the message receives a timestamp \(ts(m) = C_i \) (\(C_i \) denotes no. of events at occurred at \(P_i \))

 – Thus when \(P_j \) receives \(m \) from \(P_i \) it knows about the number of events that have occurred at \(P_i \) before the sending of \(m \).

\[
\begin{align*}
VC_0 &= (1,0,0) \\
VC_0 &= (1,1,0) \\
VC_1 &= (1,1,0) \\
VC_2 &= (0,0,0) \\
VC_2 &= (1,0,0) \\
VC_2 &= (1,1,0)
\end{align*}
\]

At \((1, 0, 0)\) local time \(P_0 \) sends message \(m \) to \(P_1, P_2 \)

\(P_0 \) delivers \(m^* \)

\[
ts(m^*) = VC_0[1] + 1
\]

After \(m \) arrives, \(P_1 \) sends \(m^* \) to \(P_0, P_2 \)

Delivery of \(m^* \) delayed by \(P_2 \) until \(m \) is received & delivered by \(P_2 \) ’s application layer

\[
\begin{align*}
At \((1, 0, 0)\) local time & P_0 \\
& \text{ sends message } m \text{ to } P_1, P_2 \\
ts(m) &= (1,0,0) \Rightarrow VC_1(1,1,0) \\
ts(m^*) &= (1,1,0) \Rightarrow VC_0(1,1,0)
\end{align*}
\]