LECTURE 8: SAFE ACCESS TO DISTRIBUTED SHARED RESOURCES: TIME, SYNCHRONIZATION, REPLICATION & CONSISTENCY

Lecture Contents

• Introduction
• Time in Distributed Systems:
 – Physical Clocks; Logical Clocks: Totally Ordered Multicast
 – Lamport’s Algorithm: Vector Clocks: Causally Ordered Multicast
• Mutual Exclusion in Distributed Systems:
 – Centralized & Decentralized Solutions
 – Election Algorithms
• Consistency Algorithms:
 – Sequential & Continuous Consistency
 – Causal Consistency
 – Client-Centric Consistency
• Replication & Caching
Introduction

- DS essential in everyday life but come with set of unique challenges, e.g. synchronizing data & resolving conflicts.
- Saw above how processes communicate – related to this is how they cooperate & synchronize with each other.
- Here, mainly look at how processes can synchronize

Examples of synchronization:
- Thus important that multiple procs don’t simultaneously access shared resource, but cooperate to grant each other temporary *exclusive* access.
- Multiple processes may also need to agree on *event orderings*, e.g. if message from process P was sent before/after another one from process Q.

- Synchronization in DS thus much harder than synchronization in uniprocessor or multiprocessor systems.
- The problems & solutions are, by their nature, rather general, and occur in many different situations in DS.

SECTION 8.1: TIME IN DISTRIBUTED SYSTEMS
Time/Clocks

- **Physical clocks**:
 - **Problem**: Often simply need exact time, not just an ordering.
 - Previously solved by time in terms of *Sun Transits*.
 - **Solution**: Universal Coordinated Time (UTC):
 - Based on number of transitions per second of caesium 133 atom.
 - At present, real time is taken as average of ~50 caesium-clocks worldwide.
 - Introduces a *leap second* from time to time to account for fact that days are getting longer (e.g. due to tidal drag, orbital wobbles etc).
 - Note: UTC is broadcast through SW radio & satellite. Satellites can give an accuracy of about ±0.5 ms.

Time/Clocks (/2)

- **Physical clocks**:
 - **Problem**: Suppose have distributed system with a UTC-receiver in it ⇒ we still have to distribute its time to each machine.
 - **Basic principle**:
 - Each machine has a timer generating interrupt \(H \) times per second.
 - There is a clock in machine \(p \) that ticks* on each timer interrupt.
 - Denote the value of that clock by \(C_p(t) \), where \(t \) is UTC time.
 - Ideally, we have that for each machine \(p \), \(C_p(t) = t \), or, \(\frac{dc}{dt} = 1 \)

*Adds one to a s/w clock keeping track of no. of ticks since some (agreed on) time in the past
Time/Clocks (/3)

- **Physical clocks:**

 - In practice: \(1 - \rho \leq \frac{dc}{dt} \leq 1 + \rho \)

 - From the figure:
 - If 2 clocks drift from UTC in opposite directions in time period \(\Delta t \), may be up to \(2\rho \Delta t \) apart

 - Goal:
 - Never let 2 clocks differ by more than time units
 - \(\Rightarrow \) synchronise every \(\delta/(2\rho) \) secs
 - \(\delta \) termed the rate of drift

![Relation btw clock time & UTC when clocks tick at different rates](image)

Time/Clocks (/4)

- **Global positioning system**

 - **Basic idea:** Can get accurate account of time as side-effect of GPS

 - **Problem:** Assuming satellite clocks are accurate & synchronized:
 - Takes time before a signal reaches receiver
 - Receiver’s clock is definitely out of synch with satellite
Time/Clocks (/5)

• **Clock synchronization principles**

 — **Principle I**

 • Every machine asks a time server for accurate time min every \(\delta / (2 \rho) \) seconds (Network Time Protocol).

 • Ok, but need to measure round trip delay, including interrupts and processing incoming messages.

 ![Getting current time from a time server](image)

 — **Principle II**

 • Time server scans all machines periodically, averages, and inform each machine how it should adjust its time wrt. its present time.

 • Ok, probably get every machine in sync. Needn’t even propagate UTC time.

 — **Fundamental**: Have to take into account that setting time back never allowed ⇒ smooth adjustments.

Time/Clocks (/6)

• **Logical Clocks: The Happened-before** relationship

 — **Problem**: First must introduce notion of ordering before can order anything.

 — The happened-before relation

 • If \(a, b \) are 2 events in same process, \(a \) comes before \(b \), then \(a \rightarrow b \)

 • If \(a \) is the sending of a message, and \(b \) is the receipt of that message, then \(a \rightarrow b \)

 • If \(a \rightarrow b \) and \(b \rightarrow c \), then \(a \rightarrow c \)

 — **Note**: This introduces a **partial ordering** of events in a system with concurrently operating processes

 • For such a system, \(x \rightarrow y \) is not true but neither is \(y \rightarrow x \)

Read: “\(a \) happens before \(b \)”
Time/Clocks (/7)

• **Logical Clocks:**

 — **Problem:** How to maintain a global view on system behaviour that is consistent with the *happened-before* relation?

 — **Solution:**

 — Attach timestamp \(C(e) \) to each event \(e \), with following properties:

 • If \(a \) and \(b \) are two events in the same process, and \(a \rightarrow b \), then require \(C(a) < C(b) \).

 • If \(a \) corresponds to sending a message \(m \), and \(b \) to the receipt of that message, then also \(C(a) < C(b) \).

 • Everybody agrees on the values of \(C(a) \) and \(C(b) \).

Time/Clocks (/8)

• **Logical Clocks:** Lamport’s Algorithm

 — **Problem:**

 — How to attach a timestamp to an event when there's no global clock?

 ⇒ maintain a consistent set of logical clocks, one per process.

 — **Solution:**

 — Each process \(P_i \) has local counter \(C_i \), adjusts it as per following rules:

 1. For any 2 successive events taking place within \(P_i \), \(C_i \) is incremented by 1.

 2. Each time a message \(m \) is sent by process \(P_i \), the message receives a timestamp \(ts(m) = C_i \)

 3. Whenever a message \(m \) is received by process \(P_j \), \(P_j \) adjusts its local counter \(C_j \) to \(\max(C_j, ts(m)) \) then executes step 1 before passing \(m \) to the application.

 — **Notes**

 • Property \(P1 \) is satisfied by (1); Property \(P2 \) by (2) and (3).

 • Can still occur that 2 events happen simultaneously.

 • Avoid this by breaking ties thro process IDs.
Time/Clocks (/9)

- **Logical Clocks: Example**

 ![Diagram of logical clocks](image1)

 Three processes, each with its own clock. Lamport’s algorithm corrects the clocks. The clocks run at different rates.

 - **Impossibility:** In (a) \(m_3 \) arrives at \(P_2 \) before it was sent from \(P_3 \)
 - **Lamport’s Algorithm:**
 - \(P_2 \) adjusts its clock to \(1 + \) sending time (\(=60 \)) on arrival of \(m_3 \) from \(P_3 \)

Time/Clocks (/10)

- **Logical Clocks:**

 - Adjustments take place in the middleware layer:

![Diagram of logical clocks in distributed systems](image2)

 The positioning of Lamport’s logical clocks in distributed systems
Time/Clocks (/11)

- **Logical Clocks:**

 Example of Totally Ordered Multicast

 - **Problem:**
 - Sometimes must ensure that concurrent updates on a replicated DB are seen in the same order everywhere:
 - P1 adds $100 to an account (initial value: $1000)
 - P2 increments account by 1% interest in New York
 - Two replicas

 ![Diagram of replicated database update](image)

 Updating a replicated database & leaving it in an inconsistent state.

 - **Result:** In absence of proper synchronization:
 - replica #1 ← $1111, while replica #2 ← $1110.

Time/Clocks (/12)

- **Logical Clocks:**

 A Digression on Message Timestamps

 - If an event a has timestamp $ts(a)$ then $ts(a)[i] - 1$ denotes the number of events processed at P_i that causally precede a.

 - Hence, when P_j receives a message from P_i with timestamp $ts(m)$, it knows the number of events that have occurred at P_i that causally preceded the sending of m.

 - This way, it knows how many events have occurred at other processes prior to the sending of m.

Lecture 8: Safe Access to Dist'd Shared Resources
Time/Clocks (/13)

• Logical Clocks: Example Totally Ordered Multicast

 Solution:

 • Process \(P_i \) sends timestamped message \(msg_i \) to all others.
 • The message itself is put in a local queue \(queue_i \).
 • Any incoming message at \(P_j \) is queued in queue \(j \), according to its timestamp, and acknowledged to every other process.

\[P_j \text{ passes a message } msg_i \text{ to its application if:} \]

1. \(msg_i \) is at the head of queue \(j \)
2. For each process \(P_k \), there is a message \(msg_k \) in queue \(j \) with a larger timestamp. This means that \(msg_i \) is at the head of \(j \)’s queue and has been acknowledged by other processes.

 Note: We are assuming that communication is **reliable & FIFO ordered.**

Time/Clocks (/14)

• Logical Clocks: Example

 Observation:

 • Lamport's clocks don't guarantee that if \(C(a) < C(b) \) that \(a \) causally preceded \(b \)

 ![Diagram of Logical Clocks Example]

 Event \(a : m_1 \) is received at T = 16;
 Event \(b : m_2 \) is sent at T = 20

 • From diagram, know that for \(P_2 \), \(T_{rcv}(m_1) < T_{snd}(m_3) \) but what can be concluded in general from this statement?

 • Know \(T_{rcv}(m_1), T_{snd}(m_3) \) correspond to events that took place at \(P_2 \) but also know \(T_{rcv}(m_1) < T_{snd}(m_2) \) but no causality there
Time/Clocks (/15)

- **Logical Clocks:**

 - **Problem with Lamport’s Clocks:**
 - No guarantee that if \(C(a) < C(b) \) that \(a \) causally preceded \(b \)

 - **Solution: Vector Clocks:**
 - Each process \(P_i \) has an array \(VC_i[1 \ldots n] \), where \(VC_i[j] \) denotes no. of events that process \(P_i \) knows have taken place at process \(P_j \).
 - When \(P_i \) sends message \(m \), it adds 1 to \(VC_i[i] \) & sends \(VC_i \) along with \(m \) as vector timestamp \(ts(m) \).
 - Result: on arrival, recipient knows \(P_i \)'s timestamp (i.e. the number of events at \(P_i \) that causally precede \(P_j \)).
 - When a process \(P_j \) delivers a message \(m \) that it received from \(P_i \) with vector timestamp \(ts(m) \), it (1) updates each \(VC_j[k] \) to \(\max\{VC_j[k], ts(m)[k]\} \)
 (2) increments \(VC_j[k] \) by 1.
 - Put another way, \(ts(m)[k] \) is a tuple consisting of a process’s logical time & its last known time of process \(k \) in terms of no. of events that occurred at \(k \).
 - So with Vector Clocks know that if \(VC(a) < VC(b) \) ie \(a \) causally preceded \(b \)

Time/Clocks (/16)

- **Vector Clocks:** Causally Ordered Multicasting*

 - **Observation:**
 - Can now ensure that a message is delivered only if all causally preceding messages have already been delivered.
 - Note, in terms of messages sent and received \(VC_i[j] = k \) means that \(P_i \) knows that \(k \) events have occurred at \(P_j \)

 - **Adjustment:**
 - \(P_i \) increments \(VC_i[i] \) only on sending a message, & \(P_j \) “adjusts” \(VC_j[k] \) (to \(\max\{VC_j[k], ts(m)[k]\} \)) on receiving a message (i.e., effectively doesn’t change \(VC_j[j] \)).

 \(P_j \) postpones delivery of \(m \) until:
 - \(ts(m)[i] = VC_j[i] + 1 \) i.e. \(m \) is next message \(P_j \) expects from \(P_i \)
 - \(ts(m)[k] \leq VC_j[k] \) for \(k \neq i \). (i.e. \(P_j \) has seen all messages sent by \(P_i \) when \(P_j \) sent \(m \))

* Not as strong as **Totally Ordered Multicasting.**

Lecture 8: Safe Access to Dist’d Shared Resources

CA4006 Lecture Notes (Martin Crane 2013)
Time/Clocks (/17)

- **Vector Clocks**: Example 1
 - Recall each time message \(m \) is sent by process \(P_i \), the message receives a timestamp \(ts(m) = C_i \) (\(C_i \) denotes no. of events at occurred at \(P_i \)).
 - Thus when \(P_j \) receives \(m \) from \(P_i \), it knows about the number of events that have occurred at \(P_i \) before the sending of \(m \).

\[
P_0 \text{ delivers } m^* \text{ cos } ts(m^*) = VC_0[1] + 1
\]

At \((1, 0, 0)\) local time \(P_0 \) sends message \(m \) to \(P_1, P_2 \)

\[
\begin{align*}
P_0 &\quad VC_0 = (1,0,0) \\
P_1 &\quad VC_1 = (1,1,0) \\
P_2 &\quad VC_2 = (0,0,0) \quad VC_2 = (1,0,0)
\end{align*}
\]

\[
\text{After } m \text{ arrives, } P_1 \text{ sends } m^* \text{ to } P_0, P_2
\]

\[
\begin{align*}
&ts(m) = (1,0,0) \Rightarrow VC_1(1,1,0) \\
&ts(m^*) = (1,1,0) \Rightarrow VC_0(1,1,0)
\end{align*}
\]

Lecture 8: Safe Access to Dist'd Shared Resources

Time/Clocks (/18)

- **Vector Clocks**: Example 2 Three processes \(P_0, P_1, P_2 \)
 - Take \(VC_2 = (0,2,2) \) & \(ts(m) = (1,3,0) \) from \(P_0 \)
 1. What information does \(P_2 \) have?
 2. What will it do when receiving \(m \) from \(P_0 \)?
 - 1. aware of 2 events that have taken place at \(P_1 \) & \(P_2 \) & none at \(P_0 \); when sent \(m, P_0 \) not aware of 2 events at \(P_2 \)-- but that doesn’t affect clock at \(P_2 \).
 - 2. To deliver \(m \) to \(P_2 \) recall rule for Causally Ordered Multicasting:
 \(P_j \) postpones delivery of \(m \) until:
 \[a) \quad ts(m)[i] = VC_j[i] + 1 \text{ (i.e. } m \text{ is next message } P_j \text{ expects from } P_i \text{)}
 \]
 \[b) \quad ts(m)[k] \leq VC_j[k] \text{ for } k \neq i \text{. (i.e. } P_j \text{ has seen all messages sent by } P_i \text{ when } P_i \text{ sent } m \text{)}
 \]
 \[\Rightarrow \text{ For } a) \quad ts(m)[0] = VC_2[0] + 1\sqrt{ }
 \]
 \[\Rightarrow \text{ For } b) ts(m)[1] \leq VC_2[1] \Rightarrow 3 \leq 2 \sqrt{ } \quad ts(m)[2] \leq VC_2[2] \Rightarrow 0 \leq 2 \sqrt{ }
 \]
 \[\Rightarrow P_2 \text{ will adjust } VC_2[0] \text{ to } 1, \text{ } VC_2[1] \text{ to } 3 \text{ deliver } m \text{ & increment } VC_2[2] \text{ to } 2
 \]
 \[\Rightarrow VC_2 = (1,3,3)
 \]
SECTION 8.2: MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS

Introduction

- Fundamental to distributed systems is the concurrency and collaboration among multiple processes.
- In concurrent/uniprocessor systems, this produces few insurmountable issues.
- Often, similarly, distributed processes need to simultaneously access same resources.
- Have seen that in terms of Totally/Causally Ordered Multicasting above that issues of Time in terms of events must be tackled as well.
- To prevent concurrent accesses corrupting the resource, or make it inconsistent, need solutions to grant ME access by processes.
- Distributed algorithms for ME problem break down into solutions:
 - Via a centralized server.
 - Completely decentralized, using a peer-to-peer system.
 - Completely distributed, with no topology imposed.
 - Completely distributed along a (logical) ring.
Mutual Exclusion

Approach 1: Centralized Server Solution

- **Problem:**
 - What happens if the Coordinator crashes?
 - Alternatively, if process blocks waiting to hear back from coordinator on requesting a resource, how to tell the difference between a wait and processor crash?

Approach 2: Lin’s Decentralized Approach

- **Principle:**
 - Assume every resource is replicated \(n \) times (i.e. a peer-to-peer approach), with each replica having its own coordinator:
 \[\Rightarrow \text{access requires a majority vote from } m > \frac{n}{2} \text{ coordinators.} \]
 - A coordinator always responds immediately to a request from a client to access (read/write) a replica.

- **Assumption:**
 - When a coordinator crashes, it will recover quickly, but will have forgotten about permissions it had granted.
Mutual Exclusion (/3)

- **Approach 2: Lin’s Decentralized Approach (cont’d)**

 - **Issue:** How robust is this system?
 - Let $p = \Delta t/T$ denote the probability that a coordinator crashes and recovers in a period Δt while having an average lifetime T.
 - No memory after crash, so coordinator can be open to new requests.
 - Have DHT system with each node participating for ~3 hours on end.
 - Given that
 - m here is number of replicas voting for a particular ME write
 - $2m - n$ coordinators need to reset in order to violate correctness of vote.
 - \Rightarrow probability that k out m coordinators reset during same $\Delta t/T$:
 $$P[\text{violation}] = p^k = \sum_{k=2m-n}^{m} \binom{m}{k} p^k (1-p)^{m-k}$$

 Access time of 10s over 3 hours period

Mutual Exclusion (/4)

- **Approach 3: Ricart & Agrawala’s (Distributed) Algorithm**

 - **Problem:**
 - Often, prob’ly correct algorithm insufficient. Need deterministic dist’d ME.
 - **Principle:**
 - Same as Lamport’s (clock synchronization) except that acks aren’t sent. Instead, replies (i.e. grants) are sent only when:
 - The receiving process has no interest in the shared resource; or
 - The receiving process is waiting for the resource, but has lower priority (known through comparison of timestamps).
 - In all other cases, reply is deferred, implying some more local admin.

- (a) 2 procs want to access shared resource at same time.
- (b) Process 0 has lowest timestamp, so it wins.
- (c) When 0 is done, sends OK also, so 2 can go ahead.
Mutual Exclusion (/5)

- **Approach 4: Token ring algorithm**
 - **Problem**
 - With 3, deadlock is ok; starvation is ok. However 1’s single point of failure now replaced by n points of failure (ie if any process crashes, can’t reply).
 - **Essence:**
 - Organize processes in a logical ring, let token be passed between them.
 - Process holding token is allowed to enter critical region (if it wants to).

 ![Logical ring](image)

 - Ring is initialized, process 0 is given a token. The token circulates.
 - Passes from k to $k+1$ (mod ring size) in point-to-point messages.
 - Process gets token, checks if needs shared resource. If so, process does so & releases the resources. After finishing, passes token along the ring.
 - Cannot immediately enter resource again using the same token.
 - If process gets token neighbour & doesn’t want resource, passes token.

Mutual Exclusion (/6)

- **A Comparison of the Four Mutual Exclusion Algorithms**
 - **Centralized algorithm** is simplest and also most efficient.
 - It requires only 3 msgs to enter/leave CS: request, grant to enter, release to exit.
 - **Decentralized case**, messages need to be sent
 - One for each m coordinators, but maybe many attempts needed (hence k).
 - **Distributed**
 - $n-1$ requests (one to each other processes, $n-1$ grants, total of $2(n-1)$.
 - For **token ring algorithm**, the number is variable.
 - If every proc constantly wants to enter CS region each token pass will result in one entry and exit, for an average of one message per critical region entered.
 - At other extreme, token sometimes circulate for hours without any interest in it.
 - In this case, the number of messages per entry into a critical region is unbounded.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Messages per entry/exit</th>
<th>Delay before entry (in message times)</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>3</td>
<td>2</td>
<td>Coordinator crash</td>
</tr>
<tr>
<td>Decentralized</td>
<td>$3m$, $k = 1, 2, \ldots$</td>
<td>$2m$</td>
<td>Starvation, low efficiency</td>
</tr>
<tr>
<td>Distributed</td>
<td>$2(n-1)$</td>
<td>$2(n-1)$</td>
<td>Crash of any process</td>
</tr>
<tr>
<td>Token ring</td>
<td>1 to ∞</td>
<td>0 to $n-1$</td>
<td>Lost token, process crash</td>
</tr>
</tbody>
</table>

Lecture 8: Safe Access to Dist'd Shared Resources CA4006 Lecture Notes (Martin Crane 2015)
Mutual Exclusion (/7)

- **Election algorithms**
 - **Principle**
 - Algorithms (as above) require one process act as a coordinator.
 - How to select this special process dynamically?
 - **Note**
 - In many systems coordinator chosen by hand (e.g. file servers).
 - This leads to centralized solutions ⇒ single point of failure.
 - **Question**
 - Coordinator chosen on the fly, to what extent can refer to centralized or distributed solution?
 - Is a fully distributed solution, i.e. one without a coordinator, always more robust than any centralized/coordinated solution?

Mutual Exclusion (/8)

- **Election By Bullying**
 - **Principle**
 - Each process has an associated priority (weight).
 - Highest priority process should always be elected as the coordinator.
 - **Issue**: How do we find the heaviest process?
 - Any process can start an election by sending election message to all other processes (assuming don’t know others’ weights).
 - If process P_{heavy} gets election message from lighters P_{light}, sends it a take-over message ruling P_{light} out of the race.
 - If a process doesn’t get a take-over message back, it wins, sends victory message to all other processes.
 - Example of this shown overleaf.
Mutual Exclusion (/9)

- Election By Bullying Example

![Election Process Diagram]

Mutual Exclusion (/10)

- Alternative: Ring Algorithm
 - Centralized algorithm is simplest and also most efficient.
 - All processes organized in ring
 - If P notices no coordinator, sends election message to successor with own process number in body of message
 - If successor is down, skip to next process, etc.
 - If Q gets election msg, adds own process number to list in msg body

![Ring Algorithm Diagram]