Exercises on Matrices

1. Find the determinants and eigenvalues of the following matrices:
 (a) \[
 \begin{bmatrix}
 2 & 2 \\
 5 & -1
 \end{bmatrix}
 \]
 (b) \[
 \begin{bmatrix}
 7 & 3 \\
 3 & -1
 \end{bmatrix}
 \]
 (c) \[
 \begin{bmatrix}
 1 & 2 \\
 4 & 3
 \end{bmatrix}
 \]
 (d) \[
 \begin{bmatrix}
 2 & 1 \\
 0 & -1
 \end{bmatrix}
 \]

2. With the eigenvalues, we can find the eigenvectors of a matrix. An Eigenvector of a matrix \(A \) is any solution vector \(x \) for which: \(Ax = \lambda x \).

Example: Find the eigenvalues and eigenvectors of the matrix \[
\begin{bmatrix}
1 & -2 \\
1 & 4
\end{bmatrix}
\]

(a) Firstly find the eigenvalues:
 Recall that the eigenvalues are calculated by solving \(\det(A - \lambda I) = 0 \) (where \(I \) is the identity matrix). Thus
 \[
 A - \lambda I = \begin{bmatrix}
 1 - \lambda & -2 \\
 1 & 4 - \lambda
 \end{bmatrix}
 \]
 \[
 \det \begin{bmatrix}
 1 - \lambda & -2 \\
 1 & 4 - \lambda
 \end{bmatrix} = 0 \] gives the quadratic \((1 - \lambda)(4 - \lambda) + 2 = 0\)
 which simplifies to \(\lambda^2 - 5\lambda + 6 = 0 \) hence \(\lambda = 2, 3 \) are the eigenvalues.

(b) Now to find the eigenvectors: From above, these are the solution vectors to the system \(Ax = \lambda x \) when we substitute the eigenvalues above. Hence for \(\lambda = 2 \), we get:
 \[
 \begin{bmatrix}
 1 & -2 \\
 4 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix} = 2 \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}
 \]
 So the first equation reads: \(x_1 - 2x_2 = 2x_1 \) giving \(x_1 = -2x_2 \) and thus the eigenvector \(x \) corresponding to the first eigenvalue \(\lambda \) is any multiple of \(\begin{bmatrix}
 -2 \\
 1
 \end{bmatrix} \).
 In a similar way, we can find the second eigenvector as any multiple of \(\begin{bmatrix}
 -1 \\
 1
 \end{bmatrix} \).

Find the eigenvectors of the above matrices in Q1 using the method outlined above.