Chapter 2:

Discrete Models

Glossary of Terms

Here are some of the types of symbols you will see in the Module:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol Face</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>Lower-case bold</td>
<td>u, v, p</td>
</tr>
<tr>
<td>Matrix</td>
<td>Upper-case bold</td>
<td>M, X, A</td>
</tr>
<tr>
<td>Vector at Time step</td>
<td>Subscript</td>
<td>u₀</td>
</tr>
<tr>
<td>Age Category at Time step</td>
<td>Subscript & Superscript</td>
<td>u₀</td>
</tr>
</tbody>
</table>
Intro to the Topic

Discrete Models

Growth and Decay

Linear & Non-Linear Interaction Models

First Order Linear Difference Equations

- We start with the most basic equations.
- State at time t purely related to that at $t - 1$
- Example in nature is cell division
 \[M_{n+1} = aM_n \]
 \(a \) constant, \(n \) is the generation number
- So number in \(n \)th generation related to that in first generation by:
 \[M_n = aM_{n-1} = \ldots = a^nM_0 \]
- So if
 1. \(|a| > 1 \) the population will increase,
 2. \(|a| = 1 \) the population will be stable,
 3. \(|a| < 1 \) the population will decrease.

Higher Order Linear Difference Equations

Example 1: Rabbit Reproduction

- **Order** of difference equation is number of terms determining present state.
- Examples of higher order difference eqns common in nature.
- Leonardo of Pisa (*Fibonacci*) modelled rabbit reproduction.
- Assumptions of Fibonacci model:
 - Each pair of rabbits can reproduce from two months old
 - Each reproduction produces only one pair of rabbits
 - All rabbits survive.
- Number of rabbit pairs at time \(n + 1 \), \(M_{n+1} \) (for \(n \) months) given by:
 \[M_{n+1} = M_n + M_{n-1}. \]
- With \(M_0 = 1 \), \(M_1 = 1 \), (1 pair to start) number grows as 1, 1, 2, 3, 5, 8, 13, . . .
Example 1: Rabbit Reproduction (cont’d)

Rather than Eqn.(2.3), 'one step' eqn (like Eqn.(2.1)) is better.

Get this by writing Eqn.(2.3) in the form:

\[\begin{align*}
 M_{n+1} + M_n &= M_{n+2} \\
 M_{n+1} &= M_{n+1} + M_{n+2}
\end{align*} \] \hspace{1cm} (2.4)

which, by writing

\[u_n = \begin{pmatrix} M_{n+1} \\ M_n \end{pmatrix} \]

takes the form

\[u_{n+1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} u_n. \] \hspace{1cm} (2.5)
Digression: Matrix Basics

Matrices & Vectors

- A matrix is an array of coefficients of the form:

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \quad (2.6)
\]

- This is called an $m \times n$ matrix as it has m rows and n columns.

- A vector is an array of coefficients of the form:

\[
A = \begin{pmatrix}
a_{11} \\
a_{21} \\
\vdots \\
a_{m1}
\end{pmatrix}
\]

Digression: Matrix Basics cont’d

Matrix Systems

- In the course we will see systems of equations of the form:

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 &= b_1 \\
a_{21}x_1 + a_{22}x_2 &= b_2
\end{align*} \quad (2.7)
\]

for a system of two equations in two unknowns x_1, x_2 with constant coefficients $a_{11}, a_{12}, a_{21}, a_{22}$ and a right-hand side b_1, b_2.

- With matrix multiplication, this can be written as:

\[
Ax = b \equiv \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \quad (2.8)
\]
Matrix Inverse, Identity Matrix

- It can be shown (c.f. Strang), that Eqn.(2.8) has a unique solution if the inverse of the matrix exists.
- The inverse of the matrix A^{-1} has the property:
 \[A \times A^{-1} \text{ is the Identity Matrix } I \]

- The $n \times n$ identity matrix is given by:
 \[I = \begin{pmatrix}
 1 & 0 & \ldots & 0 \\
 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & 1
\end{pmatrix} \tag{2.9} \]

Solutions to Matrix Systems: Matrix Determinant

- To solve $x = (x, y)$ in Eqn.(2.8) need to find A^{-1}
- For a 2×2 matrix A^{-1} is given by:
 \[A^{-1} = \frac{1}{\det(A)} \begin{pmatrix}
 a_{22} & -a_{12} \\
 -a_{21} & a_{11}
\end{pmatrix} \tag{2.10} \]
 where $\det(A)$ is the determinant of the matrix A
- The determinant of A is given by $\det(A) = a_{11}a_{22} - a_{12}a_{21}$.
- Eqn.(2.10) holds for a 2×2 matrix only.
- The solution to the linear system in Eqn.(2.8) will only exist if the following condition is met:
 \[\det(A) \equiv \begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{vmatrix} \neq 0 \tag{2.11} \]
Matrix Characteristic Equation, Trace

- The characteristic equation for A is given by $\det(A - \lambda I) = 0$.
- It arises in a number of circumstances, as we shall see later.
- For a 2×2 matrix, this expression becomes:

$$\det(A - \lambda I) = 0 \equiv \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0 \quad (2.12)$$

which reduces to $\lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0$
which we rewrite as

$$\lambda^2 - p\lambda + q = 0 \quad (2.13)$$

where $p = a_{11} + a_{22}$ is called the Trace of A and $q = \det(A)$.

Matrix Eigenvalues, Eigenvectors

- The roots of the quadratic equation in Eqn.(2.13) are given by:

$$\lambda_{1,2} = \frac{p}{2} \pm \frac{\sqrt{p^2 - 4q}}{2} \quad (2.14)$$

are known as the eigenvalues of A.
- It can be shown (see again Strang) that any matrix A can be decomposed as follows:

$$A = S\Lambda S^{-1} \quad (2.15)$$

where S has eigenvectors of A, v_1, v_2 on the columns, & Λ is a matrix with eigenvalues as diagonals & zeros elsewhere:

$$A = S \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} S^{-1} \quad (2.16)$$
Eqn. (2.15) comes in useful (amongst other things) for raising matrices to powers:

\[A^3 = (SΛS^{-1})(SΛS^{-1})(SΛS^{-1}) = (SΛ^3S^{-1}) \quad (2.17) \]

The eigenvectors \(v_1, v_2 \) are the solutions to the linear system \(Ax = λx \) for \(λ = λ_1, λ_2 \) respectively.

As with eigenvalues, these have important physical meanings for the system under consideration.

The process in Eqn. (2.15) is known as \textit{eigen decomposition} for a square matrix; where the matrix is not square, it is known as \textit{singular value decomposition}.

For difference equations the system at time step \(n \) is related to that at the previous step \(n - 1 \) through the system:

\[u_n = Au_{n-1} = A^n u_0 \quad (2.18) \]

Using eigendecomposition \(A = SΛS^{-1} \) and setting

\[\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = S^{-1}u_0 = S^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} _{n=0} \]

we observe that

\[u_n = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = c_1 λ_1^n v_1 + c_2 λ_2^n v_2 \quad (2.19) \]

where \(c_1, c_2 \) are constants.
Matrix Decomposition, Difference & Differential Equations

A similar result may be obtained for differential equations where the system of a second order equation (often) has a solution of the form:

\[
x(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t}.
\]

(2.20)

So the solutions of difference and differential equations can be broken down into a **linear combination** of the eigenvalues and corresponding eigenvectors of the original matrix system.

This is a very important result and, as we will see, comes in very useful for determining dominant or longterm solutions of matrix systems such as the Fibonacci series.

Eigenvalues and the Fibonacci Difference Equation

In order to find the long-term behaviour of the Fibonacci system in Eqn.(2.5), we can write (using Eqn.(2.17))

\[
u_n = A^n u_0 = S \Lambda^n S^{-1} u_0\]

(2.21)

Given that

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\]

from Eqn.(2.5), we find the characteristic equation to be

\[\lambda^2 - \lambda - 1 = 0\]

(from Eqn.(2.12)).

This gives the eigenvalues

\[
\lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}.
\]
Stability of Fibonacci Sequences

- The full eigendecomposition for A can then be found to be

\[
A = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix}
\lambda_1 & \lambda_2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}
\begin{pmatrix}
1 & -\lambda_2 \\
-1 & \lambda_1
\end{pmatrix}
\]

(2.22)

Thus Eqn.(2.21) reduces to

\[
\begin{pmatrix}
M_{n+1} \\
M_n
\end{pmatrix} = S \begin{pmatrix}
\lambda_1^n & 0 \\
0 & \lambda_2^n
\end{pmatrix} S^{-1} \begin{pmatrix}
1 \\
0
\end{pmatrix}
\]

(2.23)

- The nth Fibonacci number is 2nd element of vector on left hand side of Eqn.(2.23). M_n, can be shown to be:

\[
M_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]
\]

(2.24)

Stability of Fibonacci Sequences cont’d

The Golden Number & Fibonacci Sequences

- $\phi = (1 + \sqrt{5})/2$ is very important and was known to the Ancient Greeks as the golden number because rectangles with sides in the ratio $1 : 1.618$ were the most elegant.
- The Golden Number occurs frequently in nature and persists in the design of everyday items such as credit cards, ipods etc.
- As $\lambda_2 > 1$ & $-1 < \lambda_1 < 0$, λ_2 is the largest eigenvalue and its magnitude means the Fibonacci sequence is monotonically increasing.
- The fact that λ_1 is negative and of magnitude less than 1 means it contributes a slight oscillation that dies out as n increases. This can be seen in Fig. 2.2.
Example 2: Pig Reproduction

- A pair of bonhams becomes a mature pair of pigs in the next season.
- A mature pair produces six pairs of bonhams in the following season, and in every successive season thereafter.
- Each pair of bonhams produced takes one season to reach maturity and a further season to start breeding (and producing six young pairs) in every subsequent season.
- This can be seen in the diagram (fig 2.3).
- It is assumed that breeding is seasonal so that generations do not overlap and that pigs live a long time.
As with eqn(2.5), we may derive an expression for number of pairs of pigs in the \(n + 1 \)th generation w.r.t. the \(n \)th generation:

\[
\mathbf{u}_{n+1} = \begin{pmatrix} 1 & 6 \\ 1 & 0 \end{pmatrix} \mathbf{u}_n.
\] (2.25)

which (from eqn(2.12)) leads to the eigenvalue problem:

\[
\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \equiv \begin{vmatrix} 1 - \lambda & 6 \\ 1 & 0 - \lambda \end{vmatrix} = 0
\] (2.26)

which reduces to

\[
\lambda^2 - \lambda - 6 = 0
\] (2.27)

giving eigenvalues \(\lambda_1 = 3 \) and \(\lambda_2 = -2 \).
The full eigendecomposition can then be found to be:

\[
A = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}
\]

(2.28)

Thus, as in eqn(2.18) above for the Fibonacci example:

\[
u_n = A u_{n-1} = A^n u_0
\]

(2.29)

Which may be shown to be:

\[
u_n = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} \left(\begin{pmatrix} 3^n & 0 \\ 0 & -2^n \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix} \right) u_0
\]

(2.30)

Which reduces to

\[
u_n = \frac{1}{5} \begin{bmatrix} 3(3^n) + 2(-2)^n \\ 3^n - (-2)^n \end{bmatrix}
\]

(2.31)

for an initial population \(u_0 = (1, 0)^T \) (i.e. one breeding pair).

A Small Wager

Example 3: A Small Wager

A cautious but enthusiastic sporting fan decides to speculate on their team winning consecutive weekly matches.

Starting at Week 1 with €1, they put a bet at 1.05 (i.e. \(\frac{21}{20} \)) on the previous week’s winnings plus a bet at 1.1 (i.e. \(\frac{11}{10} \)) on the week before’s.

Assuming that the fan is successful every week, calculate how their winnings accumulate.

So, following Eqn.(2.3), if amount at week \(n + 1 \) is given by \(M_{n+1} \):

\[
M_{n+1} = 1.05M_n + 1.1M_{n-1}.
\]

(2.32)

With \(M_0 = 0, M_1 = 1 \)
A Small Wager (cont’d)

Hence

\[1.05M_{n+1} + 1.1M_n = M_{n+2} \]

which, by writing (as with the Rabbit Reproduction Example above)

\[u_n = \begin{pmatrix} M_{n+1} \\ M_n \end{pmatrix} \]

takes the form

\[u_{n+1} = \begin{pmatrix} 1.05 & 1.1 \\ 1 & 0 \end{pmatrix} u_n, \quad \text{with} \quad u_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

Thus \(u_1 = \begin{pmatrix} 1.05 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 2.2025 \\ 1.05 \end{pmatrix} \) etc.

As previously (with eqn(2.5) and eqn(2.25)), we may derive an expression for the amount in the \(n+1 \)th week w.r.t. the \(n \)th week:

\[u_{n+1} = \begin{pmatrix} 1.05 & 1.1 \\ 1 & 0 \end{pmatrix} u_n. \] \hspace{1cm} (2.35)

which (from eqn(2.12)) leads to the eigenvalue problem:

\[\det(A - \lambda I) = 0 \equiv \begin{vmatrix} 1.05 - \lambda & 1.1 \\ 1 & 0 - \lambda \end{vmatrix} = 0 \] \hspace{1cm} (2.36)

which reduces to

\[\lambda^2 - 1.05\lambda - 1.1 = 0 \] \hspace{1cm} (2.37)

giving eigenvalues \(\lambda_1 = 1.7 \) and \(\lambda_2 = -0.65 \).
Thus, using Eqn(2.17) above

\[A^3 = (S\Lambda S^{-1}) (S\Lambda S^{-1}) (S\Lambda S^{-1}) = (S\Lambda^3 S^{-1}), \quad (2.38) \]

the full eigendecomposition can then be found to be:

\[A = \begin{pmatrix} 1.7 & -0.65 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1.7 & 0 \\ 0 & -0.65 \end{pmatrix} \begin{pmatrix} 0.43 & 0.28 \\ -0.43 & 0.78 \end{pmatrix} \]

(2.39)

Thus, as in eqn(2.18) above for the Fibonacci example:

\[u_n = A_{n-1}u = A^n u_0 \]

(2.40)

Which may be shown to be:

\[u_n = \begin{pmatrix} 1.7 & -0.65 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1.7^n & 0 \\ 0 & (-0.65)^n \end{pmatrix} \times \begin{pmatrix} 0.43 & 0.28 \\ -0.43 & 0.78 \end{pmatrix} u_0 \]

Which reduces to

\[u_n = 0.43 \left[\begin{pmatrix} 1.7^{n+1} \end{pmatrix} - \begin{pmatrix} (-0.65)^{n+1} \end{pmatrix} \right] \]

(2.41)

for an initial sum of \(u_0 = (1, 0)^T \), this gives \(u_1 \approx \begin{pmatrix} 1.05 \\ 1 \end{pmatrix} \) etc.