Intro to the Topic

Part I

Introduction & Basics
Intro to the Topic

Recommended Books for the Course

Assessment

- Exam in May
- Three hours
- Attempt Any *Four* from *Six* Questions

Tutorials

- Tutorial/Workshop every week or so
- One hour long?
- Some questions from tutorials will feature on the exam
A Gartner¹ Definition:

‘Analytics has emerged as a catch-all term for a variety of different business intelligence (BI)- & application-related initiatives . . . Increasingly, “analytics” describes statistical and mathematical data analysis that clusters, segments, scores and predicts what scenarios are most likely to happen.

‘Whatever the use cases, “analytics” has become a hot business topic, gathering interest from business and IT professionals like looking to exploit huge mounds of internally generated & externally available data.’

¹i.e. business-oriented
Mathematical Modelling: What is a Model?

A model is an abstraction or representation of something. Could be:

- An *iconic model* (e.g. airplane in a wind tunnel)
 - represents the system with assumptions,
 - gives a simplified picture of what actually happens,
 - resembles the real thing with observable effects.

- A *mathematical model* (e.g. models of planet undergoing climate change)
 - symbolises some physical (i.e. climate)/conceptual (e.g. budget) subject
 - includes concepts not visually apparent
 - math models the system with math concepts & language.

For some problems, maths are not tractable - must use Probabilistic/Stochastic techniques.

Characteristics of a Model

- highlights features of interest without manifesting the 'unnecessary' detail.
- is cheaper, more convenient, and safer to manipulate than the real-world equivalent.
- is deterministic i.e. produces (on same input) same results on running it, unlike experiment.
Mathematical Modelling: Example 1.1

- **Tablet Dissolution in a digestive system: system features**
 - physically complex (multiple dissolution environments & individual differences)
 - also experimentally expensive (difficult, expensive & non-deterministic)
 - ethically controversial (with human/animal experiments)

 Model features: cheap, deterministic & lots of detail

Maths required: Differential equations (advection & diffusion)

Figure 1.1: Drug Dissolution In-Vitro Modelling
Mathematical Modelling: Example 1.2

- Modelling of Option Pricing in Financial Systems
 - need price of a particular financial instrument with time.
 - must solve the Black-Scholes Formula

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0
\]

(a) Black-Scholes Eqn
(b) Option Price Plot

Figure 1.2: Option Pricing

Computational Science: What is it?

A Definition from shodor.org

‘the application of computational & numerical techniques to solve large and complex problems. [It] takes advantage of not only improvements in computer hardware, but more importantly, the improvements in algorithms & mathematical techniques.’

Computational Science is the intersection of three disciplines:

Figure 1.3: A Schematic of Computational Science shodor.org
Computational Science: What is it (/2)

In Fig. 1.4,

- computational science is a branch of science (application)
- supported by the mathematical methods (algorithms)
- ... and computer science (architecture).

With theory & experiment, a crucial third mode of scientific research & design.

![Diagram](shodor.org)

FIGURE 1.4: Another View of Computational Science

13 / 327

Computational Science: What is it? (/3)

In the application of computational science to real-world problems it is necessary to decide the following:

- What scientific event or problem is in focus?
- What are its boundaries & what is external to the system?
- What are the system's parts & what detail should we include?
- Any assumptions to be made about its behavior?
- Have other systems been studied akin to this one?

These decisions made, can put together the math model to represent problem behaviour.
What is a Data Analyst/Data Modeller?

As Data Analyst/Modeller, you look at following data properties:

- Origins? Human/Machine, Single/Multiple Sources?
- Has it been altered/filtered already?
- Is there a lot of it (i.e. for model training/evaluation)?
- What is the granularity?
- How clean is it/Is it noisy?
- What are the units?
- What are its properties?

NB: Data is often someone’s IP and is treated as such by them!

Data Analytics & Developments in Computing

- Computing advances (esp. memory costs & processor speed) have driven Computational Science.
- In particular, we note developments such as:
 - Memory costs decrease with increase in storage capabilities (e.g. Amazon S3)
 - Processing power rise with reduced cost (From 10^{10}/USD/GFLOP to 10^{-2}/USD/GFLOP!)
 - Increases in Internet network speeds up to 10^{10} bits per s
 - Data availability from multiple sources (smartphones & sensors)

These may be seen as key enablers in Data Analytics.
Data Analytics ‘chews on’ ‘Big Data’. Some facts:\(^3\)

- **Volume**
 - Up to 2003, we created \(5 \times 10^{18}\) Bytes of Data.
 - In 2011, generated the same every two days.
 - In 2013, same created every 10 minutes.
 - In Future???

- **Variety**
 - Types un/structured data (e.g. text, audio, video, -omics).
 - Est.d 2 Bn smartphones in 2015 giving out sensor data.
 - Govt monitors live video feeds from \(5 \times 10^8\) of surveillance cameras.

Add the other V’s: **Velocity & Veracity**...

\(^3\)Source IBM

How do these topics fit in together?

Figure 1.5: Big Data Analytics (horicky.blogspot.ie)
Intro to the Topic
Course Introduction
Mathematical Modelling
Computational Science
Data Analytics
Examples of Deep Analytics

Examples of Time Series Data Analysis

Sensor Data Analysis
- Data from sensors on wearer's body (or from smartphone)
- Wearers can be the Young, Seniors or Athletes (or ...)
- Young often have general (health? diet?) data needs
- For Seniors often use-case is memory-related (events)
- For Athletes, purpose is often performance-related.

Figure 1.6: Image Data From Sensors

The Data
- Usually long-run time series (image or sensor data)
- Often quite noisy with gaps (due sensors & network reliability)

The Research Questions
- Is there periodicity present in the data?
- If so, does Granularity Analysis reveal anything?
 - are there 'events' across time scales?
 - what of memory interest could they highlight?
 - do event correlate btw sensors (i.e. image, accelerometer)?

For athletes' sensor data, can ask the questions:
- is the performance of the team as a whole optimal?
- action needed on individual under-performing outliers?
Betting Data Analysis

- Betting data from websites from betting ‘agents’.
- Each ‘agent’ has own strategy (loyalty, motivation) & profile
- Both of these are of interest to betting companies.
- Of equal (greater?) interest is what they as a whole ‘say’.

The Data

- Again multiple long-run time series (odds data)
- One time series for each outcome
- Market varies from liquid (major tennis) to illiquid (low league)
- Good quality, relatively non-noisy data in the main
- Web companies (GAFAs) won’t want to release data (IP!)

Betting Data Analysis (2/2)

The Research Questions for Company

- Identify most valuable customers? (big bettors? risk takers?)
- Need tracking (insider info, responsible betting, ‘cash out’)?
 - What are the major movements in the data (real-time)?
 - Can this be used to optimize ‘cashout’?
 - How about hard-to-price matches (‘Home underdogs’)?
 - Outcomes with unexpected events (e.g. sending off/penalty)?
Origins of the Module

- **Course began life as a Computational Biology module.**
- It still retains much of that sort of flavour.
- Many problems examined involve time-dependent situations.
- For this reason time series are covered in some depth.
- Many models build on those developed in earlier times.
- An example would be Rumour Spread using a model for Infectious Diseases.

Maths Content in the Module

Is a knowledge of Higher Level Maths a prerequisite?

- We cover many supplementary topics in the course.
- Topics that you are expected to be familiar with:
 - Basic probability
 - Basic matrix operations
 - Graph plotting
 - Calculus
- There will be tutorials most weeks in the course (3rd hour).
- Tutorial solutions given out towards the end of Semester.
In the CA659 Module we will cover modelling topics such as:

- Time series analysis
- Modelling with Linear & Non-linear Difference Equations
- Modelling with Linear & Non-linear Differential Equations
- Continuous Models of Growth & Decay
- Linear & Non-linear Models of Interaction