The Leslie Matrix

- The *Leslie* matrix is a generalization of the above.
- It describes annual increases in various age categories of a population.
- As above we write \(p_{n+1} = Ap_n \) where \(p_n, A \) are given by:

\[
p_n = \begin{pmatrix} p^n_1 \\ p^n_2 \\ \vdots \\ p^n_m \end{pmatrix}, \quad A = \begin{pmatrix} \alpha_1 & \alpha_2 & \ldots & \alpha_{m-1} & \alpha_m \\ \sigma_1 & 0 & \ldots & 0 & 0 \\ 0 & \sigma_2 & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & \sigma_{m-1} & 0 \end{pmatrix}
\]

(3.42)

\(\alpha_i, \sigma_i \), the number of births in age class \(i \) in year \(n \) & probability that \(i \) year-olds survive to \(i + 1 \) years old, respectively.

The Leslie Matrix (/2)

- Long-term population demographics found as with Eqn.(3.21) using \(\lambda \)s of \(A \) in Eqn.(3.42) & \(\det(A - \lambda I) = 0 \) to give Leslie characteristic equation:

\[
\lambda^n - \alpha_1 \lambda^{n-1} - \alpha_2 \sigma_1 \lambda^{n-2} - \alpha_3 \sigma_1 \sigma_2 \lambda^{n-3} - \cdots - \alpha_n \prod_{i=1}^{n-1} \sigma_i = 0
\]

(3.43)

\(\alpha_i, \sigma_i \), are births in age class \(i \) in year \(n \) & the fraction that \(i \) year-olds live to \(i + 1 \) years old, respectively.
Eqn.(3.43) has one +ive eigenvalue λ^* & corresponding eigenvector, v^*.

For a general solution like Eqn.(3.19)

$$P_n = c_1 \lambda_1^n v_1 + c_2 \lambda_2^n v_2 + \cdots + c_m \lambda_m^n v_m, \quad (3.44)$$

with dominant eigenvalue $\lambda_1 = \lambda^*$ gives long-term solution:

$$P_n \approx c_1 \lambda_1^n v_1 \quad (3.44)$$

with stable age distribution $v_1 = v^*$. The relative magnitudes of its elements give stable state proportions.

Example 3.4: Leslie Matrix for a Salmon Population

- Salmon have 3 age classes & females in the 2nd & 3rd produce 4 & 3 offspring, each season.
- Suppose 50% of females in 1st age class survive to 2nd age class & 25% of females in 2nd age class live on into 3rd.
- The Leslie Matrix (c.f. Eqn.(3.43)) for this population is:

$$A = \begin{pmatrix} 0 & 4 & 3 \\ 0.5 & 0 & 0 \\ 0 & 0.25 & 0 \end{pmatrix} \quad (3.45)$$

- Fig. 3.4 shows the growth of age classes in the population.
Example 3.4: Leslie Matrix for a Salmon Population

The eigenvalues of the Leslie matrix may be shown to be

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \begin{pmatrix} 1.5 & 0 & 0 \\ 0 & -1.309 & 0 \\ 0 & 0 & -0.191 \end{pmatrix} \quad (3.46)$$

and the eigenvector matrix S to be given by

$$S = \begin{pmatrix} 0.9474 & 0.9320 & 0.2259 \\ 0.3158 & -0.356 & -0.591 \\ 0.0526 & 0.0680 & 0.7741 \end{pmatrix} \quad (3.47)$$

- Dominant e-vector: $(0.9474, 0.3158, 0.0526)^T$, can be normalized (divide by sum), to $(0.72, 0.24, 0.04)^T$.

\[\]
Example 3.4: Leslie Matrix for a Salmon Population cont’d
- Long-term, 72% of pop’n are in 1st age class, 24% in 2nd and 4% in 3rd.
- Thus, due to principal e-value $\lambda_1 = 1.5$, population increases.
- Can verify by taking any initial age distribution & multiplying it by A.
- It always converges to the proportions above.

A side note on matrices similar to the Leslie matrix.

Any lower diagonal matrix of the form

$$
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
$$

(3.48)

Can ‘move’ a vector of age classes forward by 1 generation e.g.

$$
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ a \\ b \end{pmatrix}
$$

(3.49)
Stability in Difference Equations

- If difference equation system has the form \(u_n = A u_{n-1} \), then growth as \(n \to \infty \) depends on the \(\lambda_i \) thus:
 - If all eigenvalues \(|\lambda_i| < 1 \), system is stable & \(u_n \to 0 \) as \(n \to \infty \).
 - Whenever all values satisfy \(|\lambda_i| \leq 1 \), system is neutrally stable & \(u_n \) is bounded as \(n \to \infty \).
 - Whenever at least one value satisfies \(|\lambda_i| > 1 \), system is unstable & \(u_n \) is unbounded as \(n \to \infty \).

Markov Processes

- Often with difference equations don’t have certainties of events, but probabilities.
- So with Leslie Matrix Eqn.(3.42):
 \[
 p_n = \begin{pmatrix}
 p_{n1} \\
 p_{n2} \\
 \vdots \\
 p_{nm}
 \end{pmatrix}, \quad
 A = \begin{pmatrix}
 \alpha_1 & \alpha_2 & \ldots & \alpha_{m-1} & \alpha_m \\
 \sigma_1 & 0 & \ldots & 0 & 0 \\
 0 & \sigma_2 & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & \sigma_{m-1} & 0
 \end{pmatrix}
 \] (3.50)

\(\sigma_i \) is probability that \(i \) year-olds survive to \(i+1 \) year olds.

- Leslie model resembles a discrete-time Markov chain
- Markov chain: discrete random process with Markov property
- Markov property: state at \(t_{n+1} \) depends only on that at \(t_n \).

- The difference between Leslie model & Markov model, is:
 - In Markov \(\alpha_m + \sigma_m = 1 \) for each \(m \).
 - Leslie model may have these sums \(<1\).
Markov Processes (/2)

Stochastic Processes

- A Markov Process is a particular case of a Stochastic\(^8\) Process.
- A Markov Process is a Stochastic Process where probability to enter a state depends only on last state & on governing Transition matrix.
- If Transition Matrix has terms constant between subsequent timesteps, process is Stationary.

\[\text{Markov Chain} \]

Figure 3.5: General Case of a Markov Process © Max Heimel, TÜ Berlin

\(^8\)One where probabilities govern entering a state

Markov Processes (/3)

- General form of discrete-time Markov chain is given by:

\[u_{n+1} = Mu_n \]

where \(u_n, M \) are given by:

\[u_n = \begin{pmatrix} u_{1n} \\ u_{2n} \\ \vdots \\ u_{pn} \end{pmatrix}, \quad M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1p} \\ m_{21} & m_{22} & \cdots & m_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ m_{p1} & m_{p2} & \cdots & m_{pp} \end{pmatrix} \] \hspace{1cm} (3.51)

- \(M \) is \(p \times p \) Transition matrix & its \(m_{ij} \) terms are called Transition probabilities such that \(\sum_{j=1}^p m_{ij} = 1 \).
- \(m_{ij} \) is probability that that item goes from state \(i \) at \(t_n \) to state \(j \) at \(t_{n+1} \).
Example 3.5: Two Tree Forest Ecosystem

- In a forest there are only two kinds of trees: oaks and cedars.
- At any time n sample space of possible outcomes is (O, C)
- Here $O = \%$ of tree population that is oak in a particular year and $C = \%$ that is cedar.
- If same life spans & on death same chance an oak is replaced by an oak or a cedar
- But that cedars are more likely ($p = 0.74$) to be replaced by an oak than another cedar ($p = 0.26$).
- How can we track changes in the different tree types with time?

This is a Markov Process as oak/cedar fractions at t_{n+1} etc are defined by those at t_n.

Transition Matrix (from Eqn.(3.51)) is Table 3.1:

<table>
<thead>
<tr>
<th></th>
<th>Oak</th>
<th>Cedar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak</td>
<td>0.5</td>
<td>0.74</td>
</tr>
<tr>
<td>Cedar</td>
<td>0.5</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table 3.1: Tree Transition Matrix

Table 3.1 in matrix form is:

$$M = \begin{pmatrix} 0.5 & 0.74 \\ 0.5 & 0.26 \end{pmatrix}$$ (3.52)
Example 3.5: Two Tree Forest Ecosystem

- To track system changes, let $u_n = (o_n, c_n)^T$ be probability of oak & cedar after n generations.
- If forest is initially 50% oak and 50% cedar, then $u_0 = (0.5, 0.5)^T$.
 Hence
 $$u_n = Mu_{n-1} = M^n u_0$$ (3.53)
- M can be shown to have one positive λ & corresponding eigenvector $(0.597, 0.403)^T$.
- This is the distribution of oaks and cedars in the nth generation.

Example 3.6: Soft Drink Market Share

- In a soft drinks market there are two Brands: Coke & Pepsi.
- At any time n sample space of possible outcomes is (P, C).
- Here $P =$ % market share that is Pepsi's in one year and $C =$ % that is Coke's.
- Know that chance of switching from Coke to Pepsi is 0.1.
- And the chances of someone switching from Pepsi to Coke are 0.3.
- How can the changes in the different proportions be modelled?
Example 3.6: Soft Drink Market Share

- This is a Markov Process as shares of Coke/Pepsi at \(t_{n+1} \) are defined by those at \(t_n \).
- Transition Matrix (from Eqn.(3.51)) is Table 3.2:

<table>
<thead>
<tr>
<th></th>
<th>Coke</th>
<th>Pepsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Pepsi</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

TABLE 3.2: Soft Drink Market Share Matrix

- Table 3.2 in matrix form:

\[
M = \begin{pmatrix}
0.9 & 0.3 \\
0.1 & 0.7 \\
\end{pmatrix}
\]

(3.54)

The eigenvalues of the matrix in Eqn(3.53) are 1, \(\frac{3}{5} \).

The largest eigenvector, can be found to be \((0.75, 0.25)^T\).

This is the proportions of Coke and Pepsi in the \(n \)th generation.
Absorbing States
A state of a Markov Process is said to be absorbing or Trapping if $M_{ii} = 1$ and $M_{ij} = 0 \forall j$.

Absorbing Markov Chain
A Markov Chain is absorbing if it has one or more absorbing states. If it has one absorbing state (for instance state i), then the steady state is given by the eigenvector X where $X_i = 1$ and $X_j = 0 \forall j \neq i$.

Example 3.6: Soft Drink Market Share, Revisited

- As Soft Drinks market is ‘liquid’, KulKola decides to trial product Brand ‘X’.
- Despite its name, Brand ‘X’ has potential to ‘Shift the Paradigm’ in Cola consumption.
- They think, inside 5 years, they can capture nearly all the market.
- Investigate if this is true, given that they take 20% of Coke’s share and 30% of Pepsi’s per annum.

from KulKola’s Marketing viewpoint
Example 3.6: Soft Drink Market Share

- Again, shares of Coke/Pepsi/Brand ‘X’ at \(n + 1 \) etc are defined by those at \(n \).
- Transition Matrix (from Eqn.(3.51)) is Table 3.3:

<table>
<thead>
<tr>
<th></th>
<th>Coke</th>
<th>Pepsi</th>
<th>Brand ‘X’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke</td>
<td>0.6</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>To Pepsi</td>
<td>0.2</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Brand ‘X’</td>
<td>0.2</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.3: Soft Drink Market Share Matrix Revisited

- Table 3.3 in matrix form:

\[
M = \begin{pmatrix}
0.6 & 0.4 & 0 \\
0.2 & 0.3 & 0 \\
0.2 & 0.3 & 1
\end{pmatrix}
\]

(3.55)

\(\lambda_{\text{max}} \) of the matrix in Eqn(3.55) is 1.
- \(\mathbf{v}_{\text{max}} \) is \((0, 0, 1)^T\) giving the shares of Coke, Pepsi and Brand ‘X’ in the \(n \)th generation, respectively.
Markov Processes (/13): Hidden Markov Models

- Markov Models have a visible state
- So transition probabilities & matrix are observable.
- In Hidden Markov Models visibility restriction is relaxed
- The transition probabilities are generally not known.
- Possibly observer sees underlying variable thro noise layer.

![Figure of Markov Process](image)

Figure 3.8: Hidden Markov Process © Max Heimel, TÜ Berlin

Applications of Non-Linear Models: Logistic Growth

- Linear difference equations are useful as permit closed-form solutions to be easily obtained.
- However, solutions often have don’t agree with observation.
- In many areas of science & esp. population biology, non-linear models are better (i.e. more realistic).
- Here look at simple non-linear models for population growth over time.
- The simplest model is the logistic equation
- This can have stability problems but is a very useful, basic model
- Look at logistic equation in discrete & later continuous form.