Intro to the Topic

Part I

Introduction & Basics
Recommended Books for the Course

Assessment

- Exam in May
- Three hours
- Attempt Any *Four* from *Six* Questions

Tutorials

- Tutorial/Workshop every week or so
- One hour long?
- Some questions from tutorials will feature on the exam
What is Data Analytics?

A Gartner\(^1\) Definition:

‘Analytics has emerged as a catch-all term for a variety of different business intelligence (BI)- & application-related initiatives . . . Increasingly, “analytics” describes statistical and mathematical data analysis that clusters, segments, scores and predicts what scenarios are most likely to happen.

‘Whatever the use cases, “analytics” has become a hot business topic, gathering interest from business and IT professionals like looking to exploit huge mounds of internally generated & externally available data.’

\(^1\)i.e. business-oriented
Mathematical Modelling: What is a Model?

A model is an abstraction or representation of something. Could be:

- **An iconic model** (e.g. airplane in a wind tunnel)
 - represents the system with assumptions,
 - gives a simplified picture of what actually happens,
 - resembles the real thing with observable effects.

- **A mathematical model** (e.g. climate change model)
 - symbolises a physical (i.e. climate)/ conceptual (e.g. budget) subject
 - includes concepts not visually apparent
 - math models the system with math concepts & language.

For some problems, maths are not tractable - must use Probabilistic/ Stochastic techniques.

Characteristics of a Model:

- highlights features of interest without manifesting the ‘unnecessary’ detail.
- facilitates interpretation by experts and non-experts alike.
- is cheaper, more convenient, and safer to manipulate than the real-world equivalent.
- is deterministic i.e. produces (on same input) same results on running it, unlike experiment.
Mathematical Modelling: Example 1.1

- **Tablet Dissolution in a digestive system: system features**
 - physically complex (multiple dissolution environments & individual differences)
 - also experimentally expensive (difficult, expensive & non-deterministic)
 - ethically controversial (with human/animal experiments)

Model features: cheap, deterministic & lots of detail

Maths required: Differential equations (advection & diffusion)

Figure 1.1: Drug Dissolution In-Vitro Modelling
Mathematical Modelling: Example 1.2

- **Modelling of Option Pricing in Financial Systems**
 - need price of a particular financial instrument with time.
 - must solve the *Black-Scholes Formula*

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0
\]

(a) Black-Scholes Eqn

(Figure 1.2: Option Pricing)

Computational Science: What is it?

A Definition from shodor.org

‘the application of computational & numerical techniques to solve large and complex problems. [It] takes advantage of not only improvements in computer hardware, but more importantly, the improvements in algorithms & mathematical techniques.’

Computational Science is the intersection of three disciplines:

(Figure 1.3: A Schematic of Computational Science)
Computational Science: What is it? (/2)

In the application of computational science to real-world problems it is necessary to decide the following:

1. What scientific event or problem is in focus?
2. What are its boundaries & what is external to the system?
3. What are the system’s parts & what detail should we include?
4. Any assumptions to be made about its behavior?
5. Have other systems been studied like this one?

These decisions made, can put together the math model to represent problem behaviour.

Computational Science: What is it? (/3)

So much for the problem - what can we say about the data? As Data Analyst/Modeller, you look at following data properties:

- Origins? Human/Machine, Single/Multiple Sources?
- Has it been altered/filtered already?
- Is there a lot of it (i.e. for model training/evaluation)?
- What is the granularity?
- How clean is it/Is it noisy?
- What are the units?
- What are its properties?

NB: Data is often someone’s IP and is treated as such by them!
Examples of Time Series Data Analysis

Sensor Data Analysis
- Data from sensors on wearer's body (or from smartphone)
- Wearers can be the Young, Seniors or Athletes (or ...)
- Young often have general (health? diet?) data needs
- For Seniors often use-case is memory-related (events)
- For Athletes, purpose is often performance-related.

The Data
- Usually long-run time series (image or sensor data)
- Often quite noisy with gaps (due sensors & network reliability)

The Research Questions
- Is there periodicity present in the data?
- If so, does Granularity Analysis reveal anything?
 - are there 'events' across time scales?
 - what of memory interest could they highlight?
 - do event correlate btw sensors (i.e. image, accelerometer)?

For athletes' sensor data, can ask the questions:
- is the performance of the team as a whole optimal?
- action needed on individual under-performing outliers?
Examples of Time Series Data Analysis (/3)

Betting Data Analysis
- Betting data from websites from betting ‘agents’.
- Each ‘agent’ has own strategy (loyalty, motivation) & profile
- Both of these are of interest to betting companies.
- Of equal (greater?) interest is what they as a whole ‘say’.

The Data
- Again multiple long-run time series (odds data)
- One time series for each outcome
- Market varies from liquid (major tennis) to illiquid (low league)
- Good quality, relatively non-noisy data in the main
- Web companies (GAFAs) won’t want to release data (IP!)

Examples of Time Series Data Analysis (/4)

Betting Data Analysis (/2)
Some Practical Research Questions from Company Perspective:
- Identify most valuable customers? (big bettors? risk takers?)
- Need tracking (insider info, responsible betting, ‘cash out’)?
 - What are the major movements in the data (real-time)?
 - Can this be used to optimize ‘cashout’?
- How about hard-to-price matches (‘Home underdogs’)?
- Outcomes with unexpected events (e.g. sending off/ penalty)?
In Figure 1.5, show a map of area of Complex Systems. Many of these areas are covered in the MCM-DA course.

Course began life as a Computational Biology module. It still retains much of that sort of flavour.
Many problems examined involve time-dependent situations. For this reason time series are covered in some depth. Many models build on those developed in earlier times. An example would be Rumour Spread using a model for Infectious Diseases.
Maths Content in the Module

Is a knowledge of Higher Level Maths a prerequisite?
- We cover many supplementary topics in the course.
- Topics that you are expected to be familiar with:
 - Basic probability
 - Basic matrix operations
 - Graph plotting
 - Calculus
- There will be tutorials most weeks in the course (3rd hour).
- Tutorial solutions given out towards the end of Semester.

Topics Covered in CA659

In the CA659 Module we will cover modelling topics such as:
- Time series analysis
- Modelling with Linear & Non-linear Difference Equations
- Modelling with Linear & Non-linear Differential Equations
- Continuous Models of Growth & Decay
- Linear & Non-linear Models of Interaction