Introduction to ER Modelling

- An Entity-relationship model (ERM) is an abstract and conceptual representation of data.
- ER modelling is a DB modelling method, used to produce a type of conceptual schema of a system.
- Diagrams created by this process are called ER diagrams.
- Sequence: Conceptual data model (i.e. ER) is, at a later stage (called logical design), mapped to a logical data model (e.g. relational model); this is mapped to a physical model in physical design.
- ER Model used to interpret, specify & document requirements for DBs irrespective of DBMS being used.

Planning/ Analysis
Conceptual Data Model (ER Diagram)
Logical DB Design
Physical DB Design
Implementation

ER Definitions

- Entity (Instance):
 - An instance of a physical object in the real world.
 - Entity Class: Group of objects of the same type.
 - E.g. Entity Class "Student", Entities "John", "Trish" etc

- Attributes:
 - Properties of Entities that describe their characteristics.
 - Types:
 - Simple: Attribute that is not divisible, e.g. age.
 - Composite: Attribute composed of several simple attributes, e.g. address (house number, street, district).
 - Multiple: Attribute with a set of possible values for the same entity, e.g. Phone (home, mobile etc.) or email.
 - Key: Uniquely identifies the Entity e.g. PPIN, Chassis No.
 - Value Set (or domain): Each simple attribute associated with a VS that may be assigned to that attribute for each individual entity, e.g. age = integer, range [18,...65]
ER Definitions (cont’d)

- Relationships:
 1. Are bi-directional (i.e. can be put 2 ways)
 2. Degree:
 - binary (i.e. involve only two entities)
 - ternary (i.e. involve three participating entities)
 3. Cardinality: Entity types may be linked in more than one way.
 4. May have properties (attribs).
 5. Can be Recursive.

- **Lecturer Recommends**
 - Textbook
 - Course

- **Student Enrols on Courses**
 - mn

- **Lecturer Teaches Students**
 - 1 m

- **Man Marries Woman**
 - 1 1

- **Bar Beers sells Price**

- **Person Marries**

- **Keys/Key Attributes**
 - Super Key – Set of attributes uniquely identifying a row
 - Candidate Key – (irreducible) combination of attributes which is a unique identifier within a table. For SP {S#,P#} (FK for SP)
 - Primary Key - One of the candidate keys. For SP {S#,P#}
 - Alternate Key - The candidate key(s) (if any) not chosen as the primary key.
 - Foreign Key - A (combination of) attribute(s) in one relation whose value(s) are required to equal in the primary key of another relation.

- **ER Example 1: Entity With Attributes**
 - “A student has a student number (identifying), a name, an address (with street number, street and district) and several phone numbers”
ER Example 2: Relationship Cardinality Ratios

- Ordinary Notation

 Husband \rightarrow \text{Wife}

 Student \rightarrow \text{Book}

 Student \rightarrow \text{Book}

- Crow's Feet Notation

 Student \rightarrow \text{Book}

 Student \rightarrow \text{Book}

Relationship Cardinality Ratio Questions

Recursive Relationship Examples

- Note
 - Use of roles in recursive relationship
 - "Supervises"
 - Cardinality Ratios
The following are not part of core or lowest common denominator notation:

- **Weak Entity:**
 - One which cannot be id'd by attributes alone
 - E.g. book editions, dependent children,

- **ID-Dependent Entity:**
 - Special case of Weak Entity where id includes entity id it depends on
 - E.g. Individual apartments in a block
 - Block: Identifier BlockName, Apartment: Identifier BlockName, Appartment

- **Derived Attribute**
 - Attribute whose values are generated from other attribute
 - E.g. AcctBalance=TotalCredit – TotalDebit

More ER Definitions (cont’d)

- **Total/Partial Participation**
 - Partial: Entity's existence doesn't require existence of associated entity in a relationship. E.g. Employee Entity doesn't require Dependents
 - Total: Entity's existence requires that of associated entity
 - Note: Doesn't have to be W.E. to require Total Participation e.g. Employee Works on Project is Total on both sides.

- **Extended ER Model**
 - Sub/Super-types:
 - Used to denote "is a" relationship: Employee is either Hourly or Salaried

ER Example 3: A Hospital Case

- "Patients are treated in a single ward by the doctors assigned to them. Usually each patient will be assigned a single doctor, but in rare cases they will have two. Healthcare assistants also attend to the patients, a number of these are associated with each ward."

ER Example 4: Football Club

- A football club has a name and a ground and is made up of players. A player can play for only one club and a manager, represented by his name manages a club. A footballer has a registration number, name and age. A club manager also buys players. Each club plays against each other club in the league and matches have a date, venue and score.

ER Example 5: Bus Company

- A Bus Company owns a number of buses. Each bus is allocated to a particular route, although some routes may have several buses. Each route passes through a number of towns. One or more drivers are allocated to each stage of a route, which corresponds to a journey through some or all of the towns on a route. Some of the towns have a garage where buses are kept and each of the buses is identified by the registration number and can carry different numbers of passengers, since the vehicles vary in size and can be single or double-decked. Each route is identified by a route number and information is available on the average number of passengers carried per day for each route. Drivers have an employee number, name, address, and sometimes a telephone number.

- Entities (bold face)
 - Bus - Company owns buses and will hold information about them.
 - Route - Buses travel on routes and will need described.
 - Town - Buses pass through towns and need to know about them.
 - Driver - Company employs drivers, personnel will hold their data.
 - Stage - Routes are made up of stages.
 - Garage - Garage houses buses, and need to know where they are.

ER Example 5: Bus Company (cont'd)

- Entities and their Relationships (Cardinality)
 - A bus is allocated to a route and a route may have several buses.
 - Route-Stage (m:n) comprises
 - One or more drivers are allocated to each stage.
 - Driver-Stage (m:1) is allocated.
 - A stage passes through some or all of the towns.
 - Stage-Town (m:n) passes through:
 - A route passes through some or all of the towns.
 - Route-Town (m:n) passes through.
 - Some of the towns have a garage.
 - Garage-Town (1:1) is located.
 - A garage keeps buses and each bus has one 'home' garage.
 - Garage-Bus (1:1) is garbage.
ER Example 5: Bus Company (cont’d)

- **Attributes** (key attributes)
 - Bus (reg-no, make, size, deck, no-pass)
 - Route (route-no, avg pass)
 - Driver (emp-no, name, address, tel-no)
 - Town (name)
 - Stage (stage-no)
 - Garage (name, address)

ER Example 5: Bus Company (cont’d)

ER Example 6: University Database

- "A lecturer, identified by his or her number, name and room number, is responsible for organizing a number of course modules. Each module has a unique code and also a name and each module can involve a number of lecturers who deliver part of it. A module is composed of a series of lectures and because of economic constraints and common sense, sometimes lectures on a given topic can be part of more than one module. A lecture has a time, room and date and is delivered by a lecturer and a lecturer may deliver more than one lecture. Students, identified by number and name, can attend lectures and a student must be registered for a number of modules. We also store the date on which the student first registered for that module. Finally, a lecturer acts as a tutor for a number of students and each student has only one tutor."
Entities and their Attributes (key)
- Lecturer (Number, Name, Office), Student (Number, Name)
- Module (Code, Name), Lecture (Room, Date, Time)

Entities and their Relationships (Cardinality) italic
- "A lecturer is responsible for organising a number of course modules"
 - Lecturer-Module (1:N) is responsible for
 - "Each module can involve a number of lecturers who deliver part of it."
 - Module-Lecture (N:M) lectures
 - "A Module is composed of a series of Lectures and Lectures on a given topic can be part of more than one Module."
 - Module-Student (1:N) part of
 - "A Lecture is delivered by a Lecturer and a lecturer may deliver more than one lecture."
 - Lecture-Lecture (1:N) delivery
 - "Students, can attend Lectures."
 - Student-Lecture (N:M) attend
 - "and a Student must be registered for a number of Modules"
 - Student-Module (N:M) registers [Attribute: Date]
 - "A lecturer acts as a tutor for a number of Students and each Student has only one tutor"
 - Lecturer-Student (1:N) tuition

ER Example 6: University Database (cont’d)

ER Example 6: University Database (cont’d)